Effect of Individual Components of Lignocellulosic Biomass on Methane Production and Methanogen Community Structure - Publikacja - MOST Wiedzy

Wyszukiwarka

Effect of Individual Components of Lignocellulosic Biomass on Methane Production and Methanogen Community Structure

Abstrakt

One of the major factors that influences the economic feasibility of biogas production is the availability of digestible feedstocks. There is little research on the influence of the chemical composition of biomass on biogas synthesis, especially with regard to the content of lignocellulosic materials. Therefore, the aim of this study was to estimate how differences in the content of cellulose and lignin in lignocellulosic biomass influence the concentrations of individual volatile fatty acids (VFAs) and biogas production. Additionally, the structure of the methanogenic community was examined. The removal of fibrous and non-fibrous materials, the concentrations of individual VFAs, methane production and methanogen community structure were examined during digestion of Zea mays L. and Miscanthus sacchariflorus silages. Organics were removed with higher efficiency during the digestion of Z. mays silage than during digestion of M. sacchariflorus. This was due to the higher non-fibrous carbohydrates content in Z. mays than in M. sacchariflorus. In both digesters, propionate predominated throughout experiment. The methanogenic community in the digester fed with Z. mays was more diverse than that in the digester with M. sacchariflorus. Analysis of 16S rRNA sequences showed that six acetoclastic and four hydrogenotrophic methanogens were present in the digester fed with Z. mays L., while five acetoclastic and three hydrogenotrophic methanogens were in the digester fed with M. sacchariflorus. The abundance of Methanosarcina correlated significantly with the concentration of all analyzed VFAs.

Cytowania

  • 1 0

    CrossRef

  • 0

    Web of Science

  • 1 3

    Scopus

Autorzy (5)

Cytuj jako

Pełna treść

pobierz publikację
pobrano 45 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Creative Commons: CC-BY otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuł w czasopiśmie wyróżnionym w JCR
Opublikowano w:
Waste and Biomass Valorization nr 11, strony 1421 - 1433,
ISSN: 1877-2641
Język:
angielski
Rok wydania:
2018
Opis bibliograficzny:
Tomasz P., Klimiuk E., Bułkowska K., Kowal P., Ciesielski S.: Effect of Individual Components of Lignocellulosic Biomass on Methane Production and Methanogen Community Structure// Waste and Biomass Valorization. -Vol. 11, (2018), s.1421-1433
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1007/s12649-018-0434-3
Bibliografia: test
  1. Sawatdeenarunat, C., Surendra, K.C., Takara, D., Oechsner, H., Khanal, S.K.: Anaerobic digestion of lignocellulosic biomass: challenges and opportunities. Bioresour. Technol. 178, 178-186 (2015). https ://doi.org/10.1016/j.biort ech.2014.09.103 otwiera się w nowej karcie
  2. Ahring, B.K., Sandberg, M., Angelidaki, I.: Volatile fatty acids as indicators of process imbalance in anaerobic digestors. otwiera się w nowej karcie
  3. Appl. Microbiol. Biotechnol. 43, 559-565 (1995). https ://doi. org/10.1007/BF002 18466 otwiera się w nowej karcie
  4. Wu, W.M., Jain, M.K., Zeikus, J.G.: Anaerobic degradation of normal-and branched-chain fatty acids with four or more carbons to methane by a syntrophic methanogenic triculture. Appl. Envi- ron. Microbiol. 60, 2220-2226 (1994) otwiera się w nowej karcie
  5. Franke-Whittle, I.H., Walter, A., Ebner, C., Insam, H.: Investiga- tion into the effect of high concentrations of volatile fatty acids in anaerobic digestion on methanogenic communities. Waste. Manage. 34, 2080-2089 (2014). https ://doi.org/10.1016/j.wasma n.2014.07.020 otwiera się w nowej karcie
  6. APHA (American Public Health Association): Standard Methods for the Examination of Water and Wastewater, 18th edn. American Public Health Association, Washington (1992) otwiera się w nowej karcie
  7. EN ISO 16472:2006. Animal feeding stuffs-determination of amylase-treated neutral detergent fibre content (aNDF) otwiera się w nowej karcie
  8. EN ISO 6865:2000. Animal feeding stuffs-determination of crude fibre content-method with intermediate filtration otwiera się w nowej karcie
  9. Koch, K., Lübken, M., Gehring, T., Wichern, M., Horn, H.: Biogas from grass silage-measurements and modeling with ADM1. Bioresour. Technol. 101, 8158-8165 (2010). https ://doi. org/10.1016/j.biort ech.2010.06.009 otwiera się w nowej karcie
  10. Gilroyed, B.H., Reuter, T., Chu, A., Hao, X., Xu, W., McAllister, T.A.: Anaerobic digestion of specified risk materials with cattle manure for biogas production. Bioresour. Technol. 101, 5780- 5785 (2010). https ://doi.org/10.1016/j.biort ech.2010.02.077 otwiera się w nowej karcie
  11. Watanabe, T., Asakawa, S., Nakamura, A., Nagaoka, K., Kimura, M.: DGGE method for analyzing 16S rDNA of metha- nogenic archaeal community in paddy field soil. FEMS Micro- biol. Lett. 232, 153-163 (2004). https ://doi.org/10.1016/S0378 -1097(04)00045 -X otwiera się w nowej karcie
  12. Shannon, C.E., Weaver, W.: The Mathematical Theory of Com- munication. University of Illinois Press, Urbana (1963) otwiera się w nowej karcie
  13. Klimiuk, E., Pokój, T., Budzyński, W., Dubis, B.: Theoretical and observed biogas production from plant biomass of different fibre contents. Bioresour. Technol. 101, 9527-9535 (2010). https ://doi. org/10.1016/j.biort ech.2010.06.130 otwiera się w nowej karcie
  14. McCarty, P.L.: Anaerobic waste treatment fundamentals. Part one: chemistry and microbiology. Public Works 95, 107-112 (1964) otwiera się w nowej karcie
  15. Mussatto, S.I., Fernandes, M., Milagres, A.M.F., Roberto, I.C.: Effect of hemicellulose and lignin on enzymatic hydrolysis of cel- lulose from brewer's spent grain. Enzyme Microb. Technol. 43, 124-129 (2008). https ://doi.org/10.1016/j.enzmi ctec.2007.11.006 otwiera się w nowej karcie
  16. DeAngelis, K.M., Sharma, D., Varney, R., Simmons, B., Isern, N.G., Markilllie, L.M., Nicora, C., Norbeck, A.D., Taylor, R.C., Aldrich, J.T., Robinson, E.W.: Evidence supporting dissimila- tory and assimilatory lignin degradation in Enterobacter ligno- lyticus SCF1. Front. Microbiol. 280, 1-14 (2013). https ://doi. org/10.3389/fmicb .2013.00280 otwiera się w nowej karcie
  17. Jamaluddin, M.F., Zainol, N., Abdul-Rahmanb, R., Abdul-Ghaf- far, N.F., Salihon, J.: Comparison of anaerobic lignin degradation of banana stem waste using mixed culture from Malaysian soil and pure strains from soil culture. Asian J. Microbiol. Biotechnol. Environ. Sci. 16, 551-560 (2014)
  18. Kato, S., Chino, K., Kamimura, N., Masai, E., Yumoto, I., Kama- gata, Y.: Methanogenic degradation of lignin-derived monoaro- matic compounds by microbial enrichments from rice paddy field soil. Sci. Rep. 5, 14295 (2015). https ://doi.org/10.1038/srep1 4295 otwiera się w nowej karcie
  19. Molinuevo-Salces, B., Gómez, X., Morán, A., García-González, M.C.: Anaerobic co-digestion of livestock and vegetable pro- cessing wastes: fibre degradation and digestate stability. Waste Manage. 33, 1332-1338 (2013). https ://doi.org/10.1016/j.wasma n.2013.02.021 otwiera się w nowej karcie
  20. Candia-García, C., Delgadillo-Mirquez, L., Hernandez, M.: Biodegradation of rice straw under anaerobic digestion. Envi- ron. Technol. Innovation. 10, 215-222 (2018). https ://doi. org/10.1016/j.eti.2018.02.009 otwiera się w nowej karcie
  21. Triolo, J.M., Sommer, S.G., Møller, H.B., Weisbjerg, M.R., Jiang, X.Y.: A new algorithm to characterize biodegradability of bio- mass during anaerobic digestion: influence of lignin concentration on methane production potential. Bioresour. Technol. 102(20), 9395-9402 (2011). https ://doi.org/10.1016/j.biort ech.2011.07.026 otwiera się w nowej karcie
  22. Erakovic, S., Jankovic, A., Tsui, G.C., Tang, C.Y., Miskovic- Stankovic, V., Stevanovic, T.: Novel bioactive antimicrobial lignin containing coatings on titanium obtained by electrophoretic depo- sition. Int. J. Mol. Sci. 15(7), 12294-12322 (2014). https ://doi. org/10.3390/ijms1 50712 294 otwiera się w nowej karcie
  23. Rodriguez-Chiang, L., Llorca, J., Dahl, O.: Anaerobic co-diges- tion of acetate-rich with lignin-rich wastewater and the effect of hydrotalcite addition. Bioresour. Technol. 218, 84-91 (2016). https ://doi.org/10.1016/j.biort ech.2016.06.074 otwiera się w nowej karcie
  24. Schroyen, M., Van Hulle, S.W., Holemans, S., Vervaeren, H., Raes, K.: Laccase enzyme detoxifies hydrolysates and improves biogas production from hemp straw and miscanthus. Bioresour. Technol. 244, 597-604 (2017). https ://doi.org/10.1016/j.biort ech.2017.07.137 otwiera się w nowej karcie
  25. Wang, Q., Kuninobu, M., Ogawa, H.I., Kato, Y.: Degradation of volatile fatty acids in highly efficient anaerobic digestion. Biomass Bioenergy. 16, 407-416 (1999). https ://doi.org/10.1016/S0961 -9534(99)00016 -1 otwiera się w nowej karcie
  26. Healy, J.B., Young, L.Y., Reinhard, M.: Methanogenic decom- position of ferulic acid, a model lignin derivative. Appl. Environ. Microb. 39(2), 436-444 (1980) otwiera się w nowej karcie
  27. Shi, X., Lin, J., Zuo, J., Li, P., Li, X., Guo, X.: Effects of free ammonia on volatile fatty acid accumulation and process per- formance in the anaerobic digestion of two typical bio-wastes. otwiera się w nowej karcie
  28. J. Environ. Sci. 55, 49-57 (2017). https ://doi.org/10.1016/j. jes.2016.07.006 otwiera się w nowej karcie
  29. Ketheesan, B., Stuckey, D.C.: Effects of hydraulic/organic shock/ transient loads in anaerobic wastewater treatment: a review. Crit. Rev. Environ. Sci. Technol. 45(24), 2693-2727 (2015). https :// doi.org/10.1080/10643 389.2015.10467 71 otwiera się w nowej karcie
  30. Dabrowska, D., Bułkowska, K., Ciesielski, S.: Substrate influence on the structure of methanogenic Archaea communities during anaerobic digestion. Environ. Biotech. 11, 41-47 (2016). https :// doi.org/10.14799 /ebms2 64 otwiera się w nowej karcie
  31. Rivière, D., Desvignes, V., Pelletier, E., Chaussonnerie, S., Guermazi, S., Weissenbach, J., et al.: Towards the definition of a core of microorganisms involved in anaerobic digestion of sludge. otwiera się w nowej karcie
  32. ISME J. 3, 700-714 (2009). https ://doi.org/10.1038/ismej .2009.2 otwiera się w nowej karcie
  33. Marquez, G.P.B., Reichardt, W.T., Azanza, R.V., Onda, D.F.L., Lluisma, A.O., Montaño, M.: N. E. Dominance of hydrogeno- trophic methanogens at the peak of biogas production in thalassic digesters. Waste Biomass Valoriz. 6(2), 201-207 (2015). https :// doi.org/10.1007/s1264 otwiera się w nowej karcie
  34. Bergmann, N.E., Pramschüfer, I., Mundt, S., Plogsties, K., Her- rmann, V., Klocke, C.: M.: Polyphasic analyses of methanogenic archaeal communities in agricultural biogas plants. Appl. Envi- ron. Microbiol. 76, 2540-2548 (2010). https ://doi.org/10.1128/ AEM.01423 -09 otwiera się w nowej karcie
  35. Kendall, M.M., Boone, D.: The order Methanosarcinales. In: Dworkin, E. (ed.) The Prokaryotes, pp. 244-256. Springer, New York (2006) otwiera się w nowej karcie
  36. Calli, B., Mertoglu, B., Inanc, B., Yenigun, O.: Methanogenic diversity in anaerobic bioreactors under extremely high ammonia levels. Enzyme Microb. Technol. 37, 448-455 (2005). doi.https ://doi.org/10.1016/j.enzmi ctec.2005.03.013 otwiera się w nowej karcie
  37. Zinder, S.H., Koch, M.: Non-acetoclastic methanogenesis from acetate: acetate oxidation by a thermophilic syntrophic cocul- ture. Arch. Microbiol. 138, 263-272 (1984). doi.https ://doi. org/10.1007/bf004 02133 otwiera się w nowej karcie
  38. Schnürer, A., Zellner, G., Svensson, B.H.: Mesophilic syntrophic acetate oxidation during methane formation in biogas reactors. FEMS Micriobiol. Ecol. 29, 249-261 (1999). doi.https ://doi. org/10.1016/S0168 -6496(99)00016 -1 otwiera się w nowej karcie
  39. Sakai, S., Ehara, M., Tseng, I.C., Yamaguchi, T., Bräuer, S.L., Cadillo-Quiroz, H., et al.: Methanolinea mesophila sp. nov., a hydrogenotrophic methanogen isolated from rice field soil, and proposal of the archaeal family Methanoregulaceae fam. nov. within the order Methanomicrobiales. Int. J. Syst. Evol. Microbiol. 62, 1389-1395 (2012). doi.https ://doi.org/10.1099/ijs.0.03504 8-0 otwiera się w nowej karcie
  40. Batstone, D.J., Pind, P.F., Angelidaki, I.: Kinetics of thermophilic, anaerobic oxidation of straight and branched chain butyrate and valerate. Biotechnol. Bioeng. 84, 195-204 (2003). doi.https ://doi. org/10.1002/bit.10753 otwiera się w nowej karcie
  41. Roest, K., Heilig, H.G., Smidt, H., de Vos, W.M., Stams, A.J., Akkermans, A.D.: Community analysis of a full-scale anaero- bic bioreactor treating paper mill wastewater. Syst. Appl. Micro- biol. 28(2), 175-185 (2005). https ://doi.org/10.1016/j.syapm .2004.10.006 otwiera się w nowej karcie
Weryfikacja:
Politechnika Gdańska

wyświetlono 116 razy

Publikacje, które mogą cię zainteresować

Meta Tagi