Efficient Usage of Dense GNSS Networks in Central Europe for the Visualization and Investigation of Ionospheric TEC Variations - Publikacja - MOST Wiedzy


Efficient Usage of Dense GNSS Networks in Central Europe for the Visualization and Investigation of Ionospheric TEC Variations


The technique of the orthogonal projection of ionosphere electronic content variations for mapping total electron content (TEC) allows us to visualize ionospheric irregularities. For the reconstruction of global ionospheric characteristics, numerous global navigation satellite system (GNSS) receivers located in different regions of the Earth are used as sensors. We used dense GNSS networks in central Europe to detect and investigate a special type of plasma inhomogeneities, called travelling ionospheric disturbances (TID). Such use of GNSS sensors allows us to reconstruct the main TID parameters, such as spatial dimensions, velocities, and directions of their movement. The paper gives examples of the restoration of dynamic characteristics of ionospheric irregularities for quiet and disturbed geophysical conditions. Special attention is paid to the dynamics of ionospheric disturbances stimulated by the magnetic storms of two St. Patrick’s Days (17 March 2013 and 2015). Additional opportunities for the remote sensing of the ionosphere with the use of dense regional networks of GNSS receiving sensors have been noted too.


  • 2 2


  • 2 0

    Web of Science

  • 2 0


Informacje szczegółowe

Publikacja w czasopiśmie
artykuł w czasopiśmie wyróżnionym w JCR
Opublikowano w:
SENSORS nr 17, wydanie 10, strony 1 - 14,
ISSN: 1424-8220
Rok wydania:
Opis bibliograficzny:
Nykiel G., Zanimonskiy Y., Yampolski Y., Figurski M.: Efficient Usage of Dense GNSS Networks in Central Europe for the Visualization and Investigation of Ionospheric TEC Variations// SENSORS-BASEL. -Vol. 17, iss. 10 (2017), s.1-14
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.3390/s17102298
Bibliografia: test
  1. Hernández-Pajares, M.; Juan, J.M.; Sanz, J.; Orus, R.; Garcia-Rigo, A.; Feltens, J.; Komjathy, A.; Schaer, S.C.; Krankowski, A. The IGS VTEC maps: A reliable source of ionospheric information since 1998. J. Geodesy 2009, 83, 263-275. [CrossRef] otwiera się w nowej karcie
  2. Krypiak-Gregorczyk, A.; Wielgosz, P.; Gosciewski, D.; Paziewski, J. Validation of approximation techniques for local TEC mapping. Acta Geodyn. Geomater. 2013, 10, 275-283. [CrossRef] otwiera się w nowej karcie
  3. Yadav, S.; Sunda, S.; Sridharan, R. The impact of the 17 March 2015 St. Patrick's Day storm on the evolutionary pattern of equatorial ionization anomaly over the Indian longitudes using high-resolution spatiotemporal TEC maps: New insights. Space Weather 2016, 14. [CrossRef] otwiera się w nowej karcie
  4. Figueiredo, C.A.O.B.; Wrasse, C.M.; Takahashi, H.; Otsuka, Y.; Shiokawa, K.; Barros, D. Large-scale traveling ionospheric disturbances observed by GPS DTEC maps over North and South America on Saint Patrick's day storm in 2015. J. Geophys. Res. Space Phys. 2017, 122. [CrossRef] otwiera się w nowej karcie
  5. Schaer, S. Mapping and Predicting the Earth's Ionosphere Using the Global Positioning System. Ph.D. Thesis, University Bern, Bern, Switzerland, 1999.
  6. Bergeot, N.; Chevalier, J.-M.; Bruyninx, C.; Pottiaux, E.; Aerts, W.; Baire, Q.; Legrand, J.; Defraigne, P.; Huanget, W. Near real-time ionospheric monitoring over Europe at the Royal Observatory of Belgium using GNSS data. J. Space Weather Space Clim. 2014, 4, A31. [CrossRef] otwiera się w nowej karcie
  7. Huang, L.; Zhang, H.; Xu, P.; Geng, J.; Wang, C.; Liu, J. Kriging with Unknown Variance Components for Regional Ionospheric Reconstruction. Sensors 2017, 17, 468. [CrossRef] [PubMed] otwiera się w nowej karcie
  8. Crowley, G.; Azeem, I.; Reynolds, A.; Duly, T.M.; McBride, P.; Winkler, C.; Hunton, D. Analysis of traveling ionospheric disturbances (TIDs) in GPS TEC launched by the 2011 Tohoku earthquake. Radio Sci. 2016, 51, 507-514. [CrossRef] otwiera się w nowej karcie
  9. Otsuka, Y.; Suzuki, K.; Nakagawa, S.; Nishioka, M.; Shiokawa, K.; Tsugawa, T. GPS observations of medium-scale traveling ionospheric disturbances over Europe. Ann. Geophys. 2013, 31, 163-172. [CrossRef] otwiera się w nowej karcie
  10. Nishioka, M.; Tsugawa, T.; Kubota, M.; Ishii, M. Concentric waves and short-period oscillations observed in the ionosphere after the 2013 Moore EF5 tornado. Geophys. Res. Lett. 2013, 40, 5581-5586. [CrossRef] otwiera się w nowej karcie
  11. Yampolski, Y.M.; Zalizovsky, A.V.; Lytvynenko, L.M.; Lizunov, G.V.; Groves, K.; Moldwin, M. Magnetic Field Variations in Antarctica and the Conjugate Region (New England) Stimulated by Cyclone Activity. Radio Phys. Radio Astron. 2004, 9, 130-151. (In Russian)
  12. Hunsucker, R.D. Atmospheric gravity waves generated in the high-latitude ionosphere: A review. Rev. Geophys. 1982, 20, 293-315. [CrossRef] otwiera się w nowej karcie
  13. Hocke, K.; Schlegel, K. A review of atmospheric gravity waves and travelling ionospheric disturbances: 1982-1995. Ann. Geophys. 1996, 14, 917-940. otwiera się w nowej karcie
  14. Sopin, A.A.; Zanimonskiy, Y.M.; Lisachenko, V.N.; Yampolski, Y.M. Background variations in the total electron content of the ionosphere over the Antarctic peninsula. Radio Phys. Radio Astron. 2012, 3, 233-240. [CrossRef] otwiera się w nowej karcie
  15. Afraimovich, E.L.; Edemskiy, I.K.; Voeykov, S.V.; Yasukevich, Y.V.; Zhivetiev, I.V. Spatio-temporal structure of the wave packets generated by the solar terminator. Adv. Space Res. 2009, 44, 824-835. [CrossRef] otwiera się w nowej karcie
  16. Stoll, C.; Schluter, S.; Heise, S.; Jocobi, C.; Jakowski, N.; Raabe, A. A GPS based three-dimensional ionospheric imaging tool: Process and assessment. Adv. Space Res. 2006, 38, 2313-2317. [CrossRef] otwiera się w nowej karcie
  17. Zanimonskiy, Y.M.; Nykiel, G.; Paznukhov, A.V.; Figurski, M. Modeling of TEC Variations Based on Signals from Near Zenith GNSS Satellite Observed by Dense Regional Network. In Proceedings of the 2016 International Technical Meeting of The Institute of Navigation, Monterey, CA, USA, 25-28 January 2016; otwiera się w nowej karcie
  18. Smith, D.A.; Araujo-Pradere, E.A.; Minter, C.; Fuller-Rowell, T. A comprehensive evaluation of the errors inherent in the use of a two-dimensional shell for modeling the ionosphere. Radio Sci. 2008, 43. [CrossRef] otwiera się w nowej karcie
  19. Wielgosz, P.; Kashani, I.; Grejner-Brzezinska, D.; Zanimonskiy, Y.; Cisak, J. Regional Ionosphere Modeling Using Smoothed Pseudoranges. Presented at the 5th International Antarctic Geodesy Symposium (AGS '03), Lviv, Ukraine, 15-17 September 2003; SCAR Report No. 23. Cambridge, UK, April 2005; pp. 37-41. otwiera się w nowej karcie
  20. Zanimonskiy, Y.M.; Nykiel, G.; Figurski, M.; Yampolski, Y.M. Modeling of the travelling ionospheric disturbances. Case study of ASG-EUPOS network. In Proceedings of the EGU General Assembly 2016, Vienna, Austria, 17-22 April 2016;
  21. Geophysical Research Abstracts. 2016; Volume 18, pp. 2016-17484. otwiera się w nowej karcie
  22. Duda, R.O.; Hart, P.E. Pattern Classification and Scene Analysis;
  23. Longley, P.; Goodchild, M.; Maguire, D.; Rhind, D. Geographic Information Systems and Science, 2nd ed.; John Wiley & Sons, Ltd.: New York, NY, USA, 2005.
  24. Nykiel, G.; Figurski, M.; Koloskov, A.V.; Olijnyk, A.Y.; Zanimonskiy, Y.M. Measurements of TID's parameters based on dense national GNSS networks in Central Europe. In Proceedings of the EUREF-2016 Symposium, San Sebastian, Spain, 25-27 May 2016. otwiera się w nowej karcie
  25. National Oceanic and Atmospheric Administration ftp Server. Available online: ftp://ftp.ngdc.noaa.gov/ STP/GEOMAGNETIC_DATA/INDICES/KP_AP/ (accessed on 29 August 2017). otwiera się w nowej karcie
  26. Rodríguez-Bouza, M.; Herraiz, M.; Rodriguez-Caderot, G.; Paparini, C.; Otero, X.; Radicella, S.M. Comparison between the effect of two geomagnetic storms with the same seasonal and daily characteristics and different intensity on the European ionosphere. In Proceedings of the EGU General Assembly 2016, Vienna, Austria, 17-22 April 2016; p. 12574. otwiera się w nowej karcie
  27. Andrienko, G.; Andrienko, N.; Demsar, U.; Dransch, D.; Dykes, J.; Fabrikant, S.I.; Jern, M.; Kraak, M.J.; Schumann, H.; Tominski, C. Space, time and visual analytics. IJGIS 2010, 24, 1577-1600. [CrossRef] otwiera się w nowej karcie
  28. Duly, T.M.; Huba, J.D.; Makela, J.J. Self-consistent generation of MSTIDs within the SAMI3 numerical model. J. Geophys. Res. Space Phys. 2014, 119, 6745-6757. [CrossRef] otwiera się w nowej karcie
  29. Cherniak, I.; Zakharenkova, I.; Redmon, R.J. Dynamics of the high-latitude ionospheric irregularities during the 17 March 2015 St. Patrick's Day storm: Ground-based GPS measurements. Space Weather 2015, 13, 585-597. [CrossRef] otwiera się w nowej karcie
  30. Drob, D.P.; Emmert, J.T.; Meriwether, J.W.; Makela, J.J.; Doornbos, E.; Conde, M.; Hernandez, G.; Noto, J.; Zawdie, K.A.; McDonald, S.E.; et al. An update to the Horizontal Wind Model (HWM): The quiet time thermosphere. Earth Space Sci. 2015, 2, 301-319. [CrossRef] otwiera się w nowej karcie
  31. Liu, J.; Wang, W.; Burns, A.; Yue, X.; Zhang, S.; Zhang, Y.; Huang, C. Profiles of ionospheric storm-enhanced density during the 17 March 2015 great storm. J. Geophys. Res. Space Phys. 2016, 121, 727-744. [CrossRef] otwiera się w nowej karcie
Politechnika Gdańska

wyświetlono 75 razy

Publikacje, które mogą cię zainteresować

Meta Tagi