Enhancing Facial Palsy Treatment through Artificial Intelligence: From Diagnosis to Recovery Monitoring
Abstrakt
The objective of this study is to develop and assess a mobile application that leverages artificial intelligence (AI) to support the rehabilitation of individuals with facial nerve paralysis. The application features two primary functionalities: assessing the paralysis severity and facilitating the monitoring of rehabilitation exercises. The AI algorithm employed for this purpose was Google's ML Kit “face-detection”. The classification of facial nerve palsy was achieved by measuring the asymmetry of the user's face using a proprietary algorithm developed specifically for this study. This approach not only enables a precise assessment of paralysis severity but also allows for a personalized rehabilitation experience. Furthermore, the monitoring of rehabilitation exercise adherence and correctness is conducted through algorithms crafted for this application to ensure that patients are performing their prescribed rehabilitation exercises effectively. This comprehensive system offers a tailored and interactive approach to the management of facial nerve paralysis through the integration of AI algorithms and user-friendly mobile technology.
Cytowania
-
0
CrossRef
-
0
Web of Science
-
0
Scopus
Autorzy (2)
Cytuj jako
Pełna treść
pełna treść publikacji nie jest dostępna w portalu
Słowa kluczowe
Informacje szczegółowe
- Kategoria:
- Aktywność konferencyjna
- Typ:
- publikacja w wydawnictwie zbiorowym recenzowanym (także w materiałach konferencyjnych)
- Język:
- angielski
- Rok wydania:
- 2024
- Opis bibliograficzny:
- Górecki A., Mazur-Milecka M.: Enhancing Facial Palsy Treatment through Artificial Intelligence: From Diagnosis to Recovery Monitoring// / : , 2024,
- DOI:
- Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1109/hsi61632.2024.10613548
- Weryfikacja:
- Politechnika Gdańska
wyświetlono 25 razy
Publikacje, które mogą cię zainteresować
Empirical Analysis of Forest Penalizing Attribute and Its Enhanced Variations for Android Malware Detection
- A. G. Akintola,
- A. O. Balogun,
- L. F. Capretz
- + 7 autorów