Evolution of the HVDC Link Connecting Offshore Wind Farms to Onshore Power Systems - Publikacja - MOST Wiedzy

Wyszukiwarka

Evolution of the HVDC Link Connecting Offshore Wind Farms to Onshore Power Systems

Abstrakt

This paper presents an overview of the DC link development and evolution dedicated to HVDC structure for connecting offshore wind power plants to onshore power systems. The growing demand for the green energy has forced investors in power industry to look for resources further out at sea. Hence, the development of power electronics and industrial engineering has enabled offshore wind farms to be situated further from the shore and in deeper waters. However, their development will require, among other technologies, DC-DC conversion systems. The advantages of HVDC over HVAC technology in relation to transmission distance are given. The different HVDC configurations and topologies of HVDC converters are elucidated. In this context, the HVDC grids are a promising alternative for the expansion of the existing AC grid.

Cytowania

  • 5 3

    CrossRef

  • 0

    Web of Science

  • 6 2

    Scopus

Cytuj jako

Pełna treść

pobierz publikację
pobrano 76 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Creative Commons: CC-BY otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuły w czasopismach
Opublikowano w:
ENERGIES nr 13, strony 1 - 17,
ISSN: 1996-1073
Język:
angielski
Rok wydania:
2020
Opis bibliograficzny:
Ryndzionek R., Sienkiewicz Ł.: Evolution of the HVDC Link Connecting Offshore Wind Farms to Onshore Power Systems// ENERGIES -Vol. 13,iss. 8 (2020), s.1-17
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.3390/en13081914
Bibliografia: test
  1. Bahrman, M.P.; Johnson, B.K. The ABCs of HVDC Transmission Technologies. IEEE Power Energy Mag. 2007, 5, 32-44. [CrossRef] otwiera się w nowej karcie
  2. Jovcic, D.; van Hertem, D.; Linden, K.; Taisne, J.; Grieshaber, W. Feasibility of DC Transmission Networks. In Proceedings of the 2011 2nd IEEE PES International Conference and Exhibition on Innovative Smart Grid Technologies, Manchester, UK, 5-7 December 2011; pp. 1-8. [CrossRef] otwiera się w nowej karcie
  3. Bresesti, P.; Kling, W.L.; Hendriks, R.L.; Vailati, R. HVDC Connection of Offshore Wind Farms to the Transmission System. IEEE Trans. Energy Convers. 2007, 22, 37-43. [CrossRef] otwiera się w nowej karcie
  4. Shao, S.J.; Agelidis, V.G. Review of DC System Technologies for Large Scale Integration of Wind Energy Systems with Electricity Grids. Energies 2010, 3, 1303-1319. [CrossRef] otwiera się w nowej karcie
  5. Brenna, M.; Foiadelli, F.; Longo, M.; Zaninelli, D. Improvement of Wind Energy Production through HVDC Systems. Energies 2017, 10, 157. [CrossRef] otwiera się w nowej karcie
  6. Intelligence, W.B. The European Offshore Wind Industry-Key Trends and Statistics 2016. Available online: https://winrope-Annual-Offshore-Statistics-2016.pdf (accessed on 10 April 2020).
  7. Pineda, I. The European offshore wind industry key 2017 trends and statistics. Wind Eur. 2017, 31. [CrossRef] otwiera się w nowej karcie
  8. Selot, F.; Fraile, D.; Brindley, G.; Walsh, C. Offshore Wind in Europe: Key trends and statistics 2018. Refocus 2018, 1-37. [CrossRef] otwiera się w nowej karcie
  9. Renewables-Fuels & Technologies; IEA. Available online: https://www.iea.org/fuels-and-technologies/r enewables (accessed on 10 April 2020) . otwiera się w nowej karcie
  10. IEA Online Data Services. Renewables Information. Available online: https://www.iea.org/fuels-and-tech nologies/electricity (accessed on 10 April 2020) . otwiera się w nowej karcie
  11. Kutt, F.; Michna, M.; Kostro, G. Multiple reference frame theory in the synchronous generator model considering harmonic distortions caused by nonuniform pole shoe saturation. IEEE Trans. Energy Convers. 2020, 35, 166-173. [CrossRef] otwiera się w nowej karcie
  12. Barker, C.D.; Davidson, C.C.; Trainer, D.R.; Whitehouse, R.S. Requirements of DC-DC converters to facilitate large DC grids. In Proceedings of the 44th International Conference on Large High Voltage Electric Systems, Paris, France, 26-31 August 2012. otwiera się w nowej karcie
  13. Komusanac, I.; Fraile, D.; Brindley, G. Wind Energy in Europe in 2018. Trends and Statistics; WindEurope: Brussels, Belgium, 2019. otwiera się w nowej karcie
  14. Purta, M.; Marciniak Tomasz, T.; Rozenbaum, K. Report: "Developing offshore wind power in Poland"; otwiera się w nowej karcie
  15. McKinsey & Company: Warszawa, Poland, 2016. otwiera się w nowej karcie
  16. The European Offshore Wind Industry-Key Trends and Statistics 2017. 2018. Available online: https: //winindustry-key-trends-statistics-2017/ (accessed on 10 April 2020). otwiera się w nowej karcie
  17. Maneiro, J.; Ryndzionek, R.; Lagier, T.; Dworakowski, P.; Buttay, C. Design of a SiC based Triple Active Bridge cell for a multi-megawatt DC-DC converter. In Proceedings of the 2017 19th European Conference on Power Electronics and Applications (EPE'17 ECCE Europe), Warsaw, Poland, 11-14 September 2017; pp. P.1-P.10. [CrossRef] otwiera się w nowej karcie
  18. Mahmoudi, H.; Aleenejad, M.; Ahmadi, R. Modulated Model Predictive Control of Modular Multilevel Converters in VSC-HVDC Systems. IEEE Trans. Power Deliv. 2018, 33, 2115-2124. [CrossRef] otwiera się w nowej karcie
  19. Meah, K.; Ula, S. Comparative evaluation of HVDC and HVAC transmission systems. In Proceedings of the 2007 IEEE Power Engineering Society General Meeting, Tampa, FL, USA, 24-28 June 2007. [CrossRef] otwiera się w nowej karcie
  20. Zhang, Y.; Ravishankar, J.; Fletcher, J.; Li, R.; Han, M. Review of modular multilevel converter based multi-terminal HVDC systems for offshore wind power transmission. Renew. Sustain. Energy Rev. 2016, 61, 572-586. [CrossRef] otwiera się w nowej karcie
  21. List of HVDC Projects. 2019. Available online: https://ipfs.io/ipfs/QmXoyo6uco/wiki/List_of_HVDC_pr ojects.html (accessed on 10.04.2020).
  22. Paez, J.D.; Frey, D.; Maneiro, J.; Bacha, S.; Dworakowski, P. Overview of DC-DC Converters dedicated to HVDC Grids. IEEE Trans. Power Deliv. 2019, 34, 119-128. [CrossRef] otwiera się w nowej karcie
  23. Xiang, X.; Zhang, X.; Chaffey, G.P.; Green, T.C. An Isolated Resonant Mode Modular Converter With Flexible Modulation and Variety of Configurations for MVDC Application. IEEE Trans. Power Deliv. 2018, 33, 508-519. [CrossRef] otwiera się w nowej karcie
  24. HVDC Technology for Offshore Wind Is Maturing. 2018. Available online: https://new.abb.com/news/det ail/8270/hvdc-technology-for-offshore-wind-is-maturingl (accessed on 10 April 2020). otwiera się w nowej karcie
  25. R. Liu. Long-Distance DC Electrical Power Transmission. IEEE Electr. Insul. Mag. 2013, 29, 37-46. [CrossRef] otwiera się w nowej karcie
  26. Liu, R. Progress of Long-Distance DC Electrical Power Transmission. In Proceedings of the 2017 1st International Conference on Electrical Materials and Power Equipment (ICEMPE), Xi'an, China, 14-17 May 2017; pp. 93-96. [CrossRef] otwiera się w nowej karcie
  27. Ahmed, K.; Jovcic, D. High Voltage Direct Current Transmission: Converters, Systems and DC Grids; Wiley: Hoboken, NJ, USA, 2015; p. 438. [CrossRef] otwiera się w nowej karcie
  28. Blasco-Gimenez, R.; Anó-Villalba, S.; Rodriguez-D'Derlée, J.; Bernal-Perez, S.; Morant, F. Diode-Based HVdc Link for the Connection of Large Offshore Wind Farms. IEEE Trans. Energy Convers. 2011, 26, 615-626. [CrossRef] otwiera się w nowej karcie
  29. Akhmatov, V.; Callavik, M.; Franck, C.M.; Rye, S.E.; Ahndorf, T.; Bucher, M.K.; Müller, H.; Schettler, F.; Wiget, R. Technical Guidelines and Prestandardization Work for First HVDC Grids. IEEE Trans. Power Deliv. 2014, 29, 327-335. [CrossRef] otwiera się w nowej karcie
  30. Kouro, S.; Malinowski, M.; Gopakumar, K.; Pou, J.; Franquelo, L.G.; Wu, B.; Rodriguez, J.; Perez, M.A.; Leon, J.I. Recent advances and industrial applications of multilevel converters. IEEE Trans. Ind. Electron. 2010, 57, 2553-2580. [CrossRef] otwiera się w nowej karcie
  31. Alassi, A.; Bañales, S.; Ellabban, O.; Adam, G.; MacIver, C. HVDC Transmission: Technology Review, Market Trends and Future Outlook. Renew. Sustain. Energy Rev. 2019, 112, 530-554. [CrossRef] otwiera się w nowej karcie
  32. Pierri, E.; Binder, O.; Hemdan, N.G.; Kurrat, M. Challenges and opportunities for a European HVDC grid. Renew. Sustain. Energy Rev. 2017, 70, 427-456. [CrossRef] otwiera się w nowej karcie
  33. Martinez-Rodrigo, F.; Ramirez, D.; Rey-Boue, A.; de Pablo, S.; Herrero-de Lucas, L. Modular Multilevel Converters: Control and Applications. Energies 2017, 10, 1709. [CrossRef] otwiera się w nowej karcie
  34. Asplund, G.; Eriksson, K.; Svensson, K. DC Transmission based on Voltage Source Converters. In Proceedings of the CIGRE SC14 Colloquium, Johannesburg, South Africa, 29-30 September 1997; pp. 1-7. otwiera się w nowej karcie
  35. Keshavarz, S. Design and Evaluation of an Active Rectifier for a 4.1 MW Off-Shore Wind Turbine. 2011. Available online: http://studentarbeten.chalmers.se (accessed on 10 April 2020).
  36. Dambone Sessa.; Chiarelli.; Benato. Availability Analysis of HVDC-VSC Systems: A Review. Energies 2019, 12, 2703. [CrossRef] otwiera się w nowej karcie
  37. Zhang, Z.; Xu, Z.; Xue, Y.; Tang, G. DC-Side Harmonic Currents Calculation and DC-Loop Resonance Analysis for an LCC-MMC Hybrid HVDC Transmission System. IEEE Trans. Power Deliv. 2015, 30, 642-651. [CrossRef] otwiera się w nowej karcie
  38. Fu, Y.; Wang, C.; Tian, W.; Shahidehpour, M. Integration of Large-Scale Offshore Wind Energy via VSC-HVDC in Day-Ahead Scheduling. IEEE Trans. Sustain. Energy 2016, 7, 535-545. [CrossRef] otwiera się w nowej karcie
  39. Morawiec, M. The adaptive backstepping control of permanent magnet synchronous motor supplied by current source inverter. IEEE Trans. Ind. Inform. 2013, 9, 1047-1055. [CrossRef] otwiera się w nowej karcie
  40. Morawiec, M.; Lewicki, A. Power electronic transformer based on cascaded H-bridge converter. Bull. Pol. Acad. Sci. Tech. Sci. 2017, 65, 675-683. [CrossRef] otwiera się w nowej karcie
  41. Dworakowski, P.; Wilk, A.; Michna, M.; Lefebvre, B.; Sixdenier, F.; Mermet-Guyennet, M. Effective Permeability of Multi Air Gap Ferrite Core 3-Phase Medium Frequency Transformer in Isolated DC-DC Converters. Energies 2020, 13, 1352. [CrossRef] otwiera się w nowej karcie
  42. Marquardt, R.; Lesnicar, A. A new modular voltage source inverter topology. In Proceedings of the European Conference on Power Electronics and Applications (EPE2003), Toulouse, France, 2-4 September 2003; pp. 1-10.
  43. Abildgaard, E.N.; Molinas, M. Modelling and Control of the Modular Multilevel Converter (MMC); otwiera się w nowej karcie
  44. Energy Procedia; Elsevier Ltd.: Amsterdam, The Netherlands, 2012; Voluume 20, pp. 227-236. [CrossRef] otwiera się w nowej karcie
  45. Jones, P.S.; Davidson, C.C. Calculation of power losses for MMC-based VSC HVDC stations. In Proceedings of the 2013 15th European Conference on Power Electronics and Applications (EPE), Lille, France, 2-6 September 2013. [CrossRef] otwiera się w nowej karcie
  46. Mayordomo, J.G.; Beites, L.F.; Yang, X.; Xu, W. A Detailed Procedure for Harmonic Analysis of Three-Phase Diode Rectifiers Under Discontinuous Conduction Mode and Nonideal Conditions. IEEE Trans. Power Deliv. 2018, 33, 741-751. [CrossRef] otwiera się w nowej karcie
  47. Kuhn, O.; Menke, P.; Rainer, Z.; Timo, C.; Brogn, P.; Thisted, J.; Goldenbaum, N. 2nd Generation DC Grid Access for Offshore Wind Farms: "HVDC in an AC Fashion". 2016. Available online: http://www.ptd.siem ens.de/CIGRE2016{_}B3-110{_}2nd{_}generation{_}DC{_}GridAccess.pdf (accessed on 10 April 2020).
  48. Seman, S.; Tuan Trinh, N.; Zurowski, R.; Kreplin, S. Modeling of the Diode-Rectifier Based HVDC Transmission Solution for Large Offshore Wind Power Plants Grid Access. In Proceedings of the International Workshop on Large-Scale Integration of Wind Power into Power Systems as well as on Transmission Networks for Offshore Wind Power Plants, Vienna, Austria, 15-17 November 2016.
  49. Yu, L.; Li, R.; Xu, L. Distributed PLL-Based Control of Offshore Wind Turbines Connected With Diode-Rectifier-Based HVDC Systems. IEEE Trans. Power Deliv. 2018, 33, 1328-1336. [CrossRef] otwiera się w nowej karcie
  50. Manikam, V.R.; Cheong, K.Y. Die Attach Materials for High Temperature Applications: A Review. IEEE Trans. Compon. Packag. Manuf. Technol. 2011, 1, 457-478. [CrossRef] otwiera się w nowej karcie
  51. Yang, Y.; Davari, P.; Zare, F.; Blaabjerg, F. Enhanced Phase-Shifted Current Control for Harmonic Cancellation in Three-Phase Multiple Adjustable Speed Drive Systems Yongheng. IEEE Trans. Power Deliv. 2017, 32, 996-1004. [CrossRef] otwiera się w nowej karcie
  52. Añó-Villalba, S.; Bernal-Perez, S.; Pena, R.; Vidal-Albalate, R.; Belenguer, E.; Aparicio, N.; Blasco-Gimenez, R. 24-Pulse Rectifier for Harmonic Management in HVDC Diode Rectifier Wind Power Plants. In Proceedings of the 12th IET International Conference on AC and DC Power Transmission (ACDC 2016), Beijing, China, 28-29 May 2016; pp. 1-6. [CrossRef] otwiera się w nowej karcie
  53. Sleszynski, W.; Cichowski, A.; Mysiak, P. Current Harmonic Controller in Multiple Reference Frames for Series Active Power Filter Integrated with 18-Pulse Diode Rectifier. Bull. Pol. Acad. Sci. Tech. Sci. 2018, 66, 699-704. [CrossRef] otwiera się w nowej karcie
  54. Mysiak, P.; Sleszynski, W.; Cichowski, A. Experimental Test Results of the 150 kVA 18-Pulse Diode Rectifier with Series Active Power Filter. In Proceedings of the 2016 10th International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG), Bydgoszcz, Poland, 29 June-1 July 2016; pp. 380-383. [CrossRef] otwiera się w nowej karcie
  55. Strzelecki, R.; Mysiak, P. A Robust 18-Pulse Diode Rectifier with Coupled Reactors. Bull. Polish Acad. Sci. Tech. Sci. 2011, 59, 541-550. [CrossRef] otwiera się w nowej karcie
  56. Chiniforoosh, S.; Atighechi, H.; Davoudi, A.; Jatskevich, J.; Yazdani, A.; Filizadeh, S.; Saeedifard, M.; Martinez, J.A.; Sood, V.; Strunz, K.; Mahseredjian, J.; Dinavahi, V. Dynamic Average Modeling of Front-End Diode Rectifier Loads Considering Discontinuous Conduction Mode and Unbalanced Operation. IEEE Trans. Power Deliv. 2012, 27, 421-429. [CrossRef] otwiera się w nowej karcie
  57. Kirby, N.M.; Xu, L.; Luckett, M.; Siepmann, W. HVDC Transmission for Large Offshore Wind Farms. Power Eng. J. 2002, 16, 135-141. [CrossRef] otwiera się w nowej karcie
  58. Blecharz, K.; Wachowiak, D.; Krzemiski, Z. A novel speed observer for doubly-fed induction generator. In Proceedings of the 2017 19th European Conference on Power Electronics and Applications (EPE'17 ECCE Europe), Warsaw, Poland, 11-14 September 2017. [CrossRef] otwiera się w nowej karcie
  59. Amber, L.; Haddad, K. Hybrid Si IGBT-SiC Schottky Diode Modules for Medium to High Power Applications. In Proceedings of the 2017 IEEE Applied Power Electronics Conference and Exposition (APEC), Tampa, FL, USA, 26-30 March 2017; pp. 3027-3032. [CrossRef] otwiera się w nowej karcie
  60. Chang, Y.; Cai, X. Hybrid Topology of a Diode-Rectifier-Based HVDC System for Offshore Wind Farms. IEEE J. Emerg. Sel. Top. Power Electron. 2019, 7, 2116-2128. [CrossRef] otwiera się w nowej karcie
  61. Torres-Olguin, R.E.; Molinas, M.; Undeland, T. Hybrid HVDC connection of large offshore wind farms to the AC grid. In Proceedings of the 2012 IEEE International Symposium on Industrial Electronics, Hangzhou, China, 28-31 May 2012; pp. 1591-1597. [CrossRef] otwiera się w nowej karcie
  62. Zhang, X.; Wu, Z.; Hu, M.; Li, X.; Lv, G. Coordinated Control Strategies of VSC-HVDC-Based Wind Power Systems for Low Voltage Ride Through. Energies 2015, 8, 7224-7242. [CrossRef] otwiera się w nowej karcie
  63. Lebre, J.; Portugal, P.; Watanabe, E. Hybrid HVDC (H2VDC) System Using Current and Voltage Source Converters. Energies 2018, 11, 1323. [CrossRef] otwiera się w nowej karcie
  64. Veilleux, E.; Lehn, P.W. Interconnection of direct-drive wind turbines using a series-connected dc grid. IEEE Trans. Sustain. Energy 2014, 5, 139-147. [CrossRef] otwiera się w nowej karcie
  65. Nguyen, T.H.; Lee, D.; Kim, C. A Series-Connected Topology of a Diode Rectifier and a Voltage-Source Converter for an HVDC Transmission System. IEEE Trans. Power Electron. 2014, 29, 1579-1584. [CrossRef] otwiera się w nowej karcie
  66. Nguyen, T.H.; Lee, D.C. Control of offshore wind farms based on HVDC. In Proceedings of the 2012 IEEE Energy Conversion Congress and Exposition (ECCE), Raleigh, NC, USA, 15-20 September 2012; pp. 3113-3118. [CrossRef] otwiera się w nowej karcie
  67. Nguyen, T.H.; Lee, D.C.; Kim, C.K. A cost-effective converter system for HVDC links integrated with offshore wind farms. In Proceedings of the IECON 2013-39th Annual Conference of the IEEE Industrial Electronics Society, Vienna, Austria, 10-13 November 2013; pp. 7978-7983. [CrossRef] otwiera się w nowej karcie
  68. De Prada Gil, M.; Domínguez-García, J.L.; Díaz-González, F.; Aragüés-Peñalba, M.; Gomis-Bellmunt, O. Feasibility Analysis of Offshore Wind Power Plants with DC Collection Grid. Renew. Energy 2015, 78, 467-477. [CrossRef] otwiera się w nowej karcie
  69. Entsoe. European Network of Transmission System Operators for DSR. Eur. Electr. Grid Initiat. Roadmap 2018, 18, 20.
  70. Rogelj, J.; Den Elzen, M.; Höhne, N.; Fransen, T.; Fekete, H.; Winkler, H.; Schaeffer, R.; Sha, F.; Riahi, K.; Meinshausen, M. Paris Agreement climate proposals need a boost to keep warming well below 2 • C. Nature 2016, 534, 631-639. [CrossRef] otwiera się w nowej karcie
  71. Chen, C.; Luo, F.; Kang, Y. A Review of SiC Power Module Packaging: Layout, Material System and Integration. CPSS Trans. Power Electron. Appl. 2017, 2, 170-186. [CrossRef] otwiera się w nowej karcie
  72. Rodriguez, P.; Rouzbehi, K. Multi-terminal DC grids: challenges and prospects. J. Mod. Power Syst. Clean Energy 2017, 5, 515-523. [CrossRef] otwiera się w nowej karcie
  73. Hwang, S.; Song, S.; Jang, G.; Yoon, M. An Operation Strategy of the Hybrid Multi-Terminal HVDC for Contingency. Energies 2019, 12, 2042. [CrossRef] otwiera się w nowej karcie
  74. Hertem, D.V.A.N.; Gomis-Bellmunt, O.; Liang, J.U.N. HVDC Grids: For Offshore and Supergrid of The Future;
  75. John Wiley & Sons Inc.: Hoboken, NJ, USA, 2016; p. 528. [CrossRef] otwiera się w nowej karcie
  76. Fernández-Guillamón, A.; Das, K.; Cutululis, N.A.; Molina-García, Á. Offshore Wind Power Integration into Future Power Systems: Overview and Trends. J. Mar. Sci. Eng. 2019, 7, 399. [CrossRef] otwiera się w nowej karcie
  77. Schuster, M.; Walther, T. Valuation of combined wind power plant and hydrogen storage: A decision tree approach. In Proceedings of the 2017 14th International Conference on the European Energy Market (EEM), Dresden, Germany, 6-9 June 2017. [CrossRef] otwiera się w nowej karcie
  78. Wulf, C.; Linßen, J.; Zapp, P. Review of Power-To-Gas Projects in Europe; Energy Procedia; otwiera się w nowej karcie
  79. Elsevier Ltd.: Amsterdam, The Netherlands, 2018; Volume 155, pp. 367-378. [CrossRef] otwiera się w nowej karcie
  80. Offshoreenergystorage. Renewable Energy Storage. 2019. Available online: https://www.offshoreenergyst orage.com/ (accessed on 10 April 2020).
  81. c 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). otwiera się w nowej karcie
Weryfikacja:
Politechnika Gdańska

wyświetlono 192 razy

Publikacje, które mogą cię zainteresować

Meta Tagi