Full scattering profile of circular optical phantoms mimicking biological tissue - Publikacja - MOST Wiedzy

Wyszukiwarka

Full scattering profile of circular optical phantoms mimicking biological tissue

Abstrakt

Human tissue is one of the most complex optical media since it is turbid and nonhomogeneous. In our poster, we suggest a new type of skin phantom and an optical method for sensing physiological tissue condition, basing on the collection of the ejected light at all exit angles, to receive the full scattering profile. Conducted experiments were carried out on an unique set-up for noninvasive encircled measurement. Set-up consisted of a laser, a photodetector and new tissues-like phantoms made with a polyvinyl chloride-plastisol (PVCP), silicone elastomer polydimethylsiloxane (PDMS) and PDMS with glycerol mixture. Our method reveals an isobaric point, which is independent of the optical properties. Furthermore, we present the angular distribution of cylindrical phantoms, in order to sense physiological tissue state.

Cytowania

  • 0

    CrossRef

  • 0

    Web of Science

  • 1

    Scopus

Pełna treść

pobierz publikację
pobrano 57 razy

Licencja

Copyright (2017 SPIE)

Informacje szczegółowe

Kategoria:
Aktywność konferencyjna
Typ:
materiały konferencyjne indeksowane w Web of Science
Tytuł wydania:
Proceedings Volume 10077, Nanoscale Imaging, Sensing, and Actuation for Biomedical Applications XIV strony 1 - 9
Język:
angielski
Rok wydania:
2017
Opis bibliograficzny:
Feder I., Wróbel M., Duadi H., Fixler D., Jędrzejewska-Szczerska M..: Full scattering profile of circular optical phantoms mimicking biological tissue, W: Proceedings Volume 10077, Nanoscale Imaging, Sensing, and Actuation for Biomedical Applications XIV, 2017, ,.
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1117/12.2250652
Bibliografia: test
  1. Tuchin, V.V., "Light scattering study of tissues," Physics-Uspekhi 40(5), 495 (1997). otwiera się w nowej karcie
  2. Schmitt, J., A. Knüttel, and R. Bonner, "Measurement of optical properties of biological tissues by low-coherence reflectometry," Applied Optics 32(30), 6032- 6042 (1993). otwiera się w nowej karcie
  3. Lee, P., W. Gao, and X. Zhang, "Performance of single-scattering model versus multiple-scattering model in the determination of optical properties of biological tissue with optical coherence tomography," Applied optics 49(18), 3538-3544 (2010). otwiera się w nowej karcie
  4. Levitz, D., et al., "Determination of optical scattering properties of highly-scattering media in optical coherence tomography images," Optics express 12(2), 249-259 (2004). otwiera się w nowej karcie
  5. Schmitt, J. and A. Knüttel, "Model of optical coherence tomography of heterogeneous tissue," JOSA A 14(6), 1231-1242 (1997). otwiera się w nowej karcie
  6. Thrane, L., H.T. Yura, and P.E. Andersen, "Analysis of optical coherence tomography systems based on the extended Huygens-Fresnel principle," JOSA A 17(3), 484-490 (2000). otwiera się w nowej karcie
  7. Pickering, J.W., et al., "Double-integrating-sphere system for measuring the optical properties of tissue," Applied optics, 32(4), 399-410 (1993). otwiera się w nowej karcie
  8. Arridge, S.R., M. Cope, and D. Delpy, The theoretical basis for the determination of optical pathlengths in tissue: temporal and frequency analysis," Physics in medicine and biology, 37(7), 1531 (1992). otwiera się w nowej karcie
  9. Spinelli, L., et al., "Determination of reference values for optical properties of liquid phantoms based on Intralipid and India ink," Biomedical Optics Express, 5(7), 2037- 2053 (2014). otwiera się w nowej karcie
  10. Jacques, S.L., "Optical properties of biological tissues: a review. Physics in medicine and biology," Physics in medicine and biology, 58(11), R37 (2013). otwiera się w nowej karcie
  11. Lu, G. and B. Fei, "Medical hyperspectral imaging: a review," Journal of biomedical optics, 19(1), 010901-010901 (2014). otwiera się w nowej karcie
  12. Duadi, H., I. Feder, and D. Fixler, "Linear dependency of full scattering profile isobaric point on tissue diameter," Journal of biomedical optics 19(2), 026007- 026007 (2014). otwiera się w nowej karcie
  13. Feder, I., H. Duadi, and D. Fixler "Experimental system of the full scattering profile of circular phantoms," Biomed. Opt. Express 6(8) 2877-2886, (2015). otwiera się w nowej karcie
  14. Feder, I., H. Duadi, T. Dreifuss and D. Fixler "The influence in the full scattering profile from cylindrical tissues following changes in vessels diameter: experimental evidence for the shielding effect," Journal of biophotonics (2015). otwiera się w nowej karcie
  15. Feder, I., et al., "Experimental results of full scattering profile from finger tissue-like phantom," Biomed. Opt. Express 7, 4695-4701 (2016) otwiera się w nowej karcie
  16. Wróbel, M.S. et al., "Nanoparticle-free tissue-mimicking phantoms with intrinsic scattering," Biomed. Opt. Express 7, 2088-2094 (2016). otwiera się w nowej karcie
  17. Wróbel, M.S., et al. "Multi-layered tissue head phantoms for noninvasive optical diagnostics," J. Innov. Opt. Health Sci., 08, 1541005 (2015). otwiera się w nowej karcie
  18. Wróbel, M.S., et al. "Measurements of fundamental properties of homogeneous tissue phantoms," J. Biomed. Opt., 20(4), 045004 (2015) otwiera się w nowej karcie
  19. Ankri, R., H. Taitelbaum, and D. Fixler, "On Phantom experiments of the photon migration model in tissues," The Open Optics Journal 5, 28-32 (2011). otwiera się w nowej karcie
  20. Ankri, R., H. Duadi, and D. Fixler. "A new diagnostic tool based on diffusion reflection measurements of gold nanoparticles," SPIE BiOS. (2012). otwiera się w nowej karcie
  21. Ankri, R., "Non Invasive Optical Technique for the Investigation of Tissue Structure and Physiology," Ph.D. Thesis, 4-11 (2012). otwiera się w nowej karcie
  22. Friebel, M., et al., "Determination of optical properties of human blood in the spectral range 250to1100nm using Monte Carlo simulations with hematocrit- dependent effective scattering phase functions," Journal of biomedical optics 11(3), 034021-034021-10 (2006). otwiera się w nowej karcie
  23. Reif, R., O. A'Amar, AND I. J Bigio, "Analytical model of light reflectance for extraction of the optical properties in small volumes of turbid media," Applied optics 46(29) 7317-7328 (2007). otwiera się w nowej karcie
  24. Jacques, SL, BW Pogue, "Tutorial on diffuse light transport," Journal of biomedical optics 13(4) 041302-19 (2008). otwiera się w nowej karcie
  25. Duadi, H., D. Fixler, and R. Popovtzer. "Dependence of light scattering profile in tissue on blood vessel diameter and distribution: a computer simulation study," Journal of biomedical optics 18(11), 111408-111408 (2013). otwiera się w nowej karcie
  26. Duadi, H., Nitzan M. and D. Fixler. "Simulation of oxygen saturation measurement in a single blood vein," Optics Letters (to be published). otwiera się w nowej karcie
  27. M. S. Wróbel, M. Jedrzejewska-Szczerska, S. Galla, L. Piechowski, M. Sawczak, A. P. Popov, A. V. Bykov, V. V. Tuchin, and A. Cenian, "Use of optical skin phantoms for preclinical evaluation of laser efficiency for skin lesion therapy," Journal of Biomedical Optics 20, 85003 (2015). otwiera się w nowej karcie
  28. M. Jędrzejewska-Szczerska, M. S. Wróbel, S. Galla, A. P. Popov, A. V. Bykov, V. V. Tuchin, and A. Cenian, "Investigation of photothermolysis therapy of human skin diseases using optical phantoms," SPIE Proc. 9447, 944715 (2015). otwiera się w nowej karcie
  29. S. Hyttel-Sorensen, S. Kleiser, M. Wolf, and G. Greisen, "Calibration of a prototype NIRS oximeter against two commercial devices on a blood-lipid phantom," Biomed Opt Express 4, 1662-1672 (2013). otwiera się w nowej karcie
  30. V. O. Korhonen, T. S. Myllyla, M. Y. Kirillin, A. P. Popov, A. V. Bykov, A. V. Gorshkov, E. A. Sergeeva, M. Kinnunen, and V. Kiviniemi, "Light Propagation in NIR Spectroscopy of the Human Brain," IEEE Journal of Selected Topics in Quantum Electronics 20, 1-10 (2014). otwiera się w nowej karcie
  31. D. Fixler, R. Tirosh, N. Zurgil, and M Deutsch, "Tracing apoptosis and stimulation in individual cells by fluorescence intensity and anisotropy decay ," Journal of biomedical optics, 19(3), 034007-0340078 (2005). otwiera się w nowej karcie
  32. D. Fixler, R. Tirosh, T. Zinman, A. Shainberg, and M Deutsch, " Differential aspects in ratio measurements of [Ca 2+]i relaxation in cardiomyocyte contraction following various drug treatments ," Cell Calcium 31(6), 279-287 (2002). otwiera się w nowej karcie
Weryfikacja:
Politechnika Gdańska

wyświetlono 36 razy

Publikacje, które mogą cię zainteresować

Meta Tagi