Impact of selected drugs and their binary mixtures on the germination of Sorghum bicolor (sorgo) seeds - Publikacja - MOST Wiedzy

Wyszukiwarka

Impact of selected drugs and their binary mixtures on the germination of Sorghum bicolor (sorgo) seeds

Abstrakt

The aim of this study was to assess the toxicological potential of binary drug mixtures and individual drugs under different pH conditions with different inorganic ion additions on the germination of Sorghum bicolor (sorgo) seeds. To assess whether the given drug mixtures were more phytotoxic than the individual compounds, concentration addition (CA) and independent action (IA) approaches were applied to estimate the predicted phytotoxicity values, followed by calculations of the MDR (model deviation factor) to determine the deviation from the predicted values. Binary mixtures of chloramphenicol with ketoprofen, diclofenac sodium, and oxytetracycline hydrochloride proved to be synergistic. The pH changes had the largest impact on the phytotoxicity of the diclofenac sodium and ketoprofen solutions, elevating their toxicity toward S. bicolor, and the co-presence of inorganic ions was shown to have an impact on ketoprofen, chloramphenicol, and oxytetracycline hydrochloride. Most of the interactions between sorgo plants and pharmaceuticals with added ions were antagonistic in nature, particularly those calculated using the IA model, with a few cases (one case for ketoprofen and chloramphenicol, two cases for oxytetracycline hydrochloride, and four cases for diclofenac sodium) of overestimation.

Cytowania

  • 9

    CrossRef

  • 0

    Web of Science

  • 1 0

    Scopus

Cytuj jako

Pełna treść

pobierz publikację
pobrano 39 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Creative Commons: CC-BY otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuł w czasopiśmie wyróżnionym w JCR
Opublikowano w:
ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH nr 25, wydanie 19, strony 18717 - 18727,
ISSN: 0944-1344
Język:
angielski
Rok wydania:
2018
Opis bibliograficzny:
Wieczerzak M., Kudłak B., Namieśnik J.: Impact of selected drugs and their binary mixtures on the germination of Sorghum bicolor (sorgo) seeds// ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH. -Vol. 25, iss. 19 (2018), s.18717-18727
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1007/s11356-018-2049-4
Bibliografia: test
  1. Backhaus T, Faust M (2012) Predictive environmental risk assessment of chemical mixtures: a conceptual framework. Environ Sci Technol 46:2564-2573. https://doi.org/10.1021/es2034125 otwiera się w nowej karcie
  2. Bartrons M, Peñuelas J (2017) Pharmaceuticals and personal-care prod- ucts in plants. Trends Plant Sci 22:194-203. https://doi.org/10.1016/ j.tplants.2016.12.010 otwiera się w nowej karcie
  3. Belden JB, Gilliom RJ, Lydy MJ (2007) How well can we predict the toxicity of pesticide mixtures to aquatic life? Integ Environ Assess Manag 3:364-372 http://onlinelibrary.wiley.com/doi/10.1002/ieam. 5630030307/abstract otwiera się w nowej karcie
  4. Berendsen B, Stolker L, de Jong J, Nielen M, Tserendorj E, Sodnomdarjaa R, Cannavan A, Elliott C (2010) Evidence of natural occurrence of the banned antibiotic chloramphenicol in herbs and grass. Anal Bioanal Chem 397:1955-1963. https://doi.org/10.1007/ s00216-010-3724-6 otwiera się w nowej karcie
  5. Calderón-Preciado D, Matamoros V, Savé R, Muñoz P, Biel C, Bayona JM (2013) Uptake of microcontaminants by crops irrigated with reclaimed water and groundwater under real field greenhouse con- ditions. Environ Sci Pollut Res Int 20:3629-3638. https://doi.org/10. 1007/s11356-013-1509-0 otwiera się w nowej karcie
  6. Carballa M, Fink G, Omil F, Lema JM, Ternes T (2008) Determination of the solid-water distribution coefficient (Kd) for pharmaceuticals, estrogens and musk fragrances in digested sludge. Wat Res 42: 287-295. https://doi.org/10.1016/j.watres.2007.07.012 otwiera się w nowej karcie
  7. Carmona E, Andreu V, Picó Y (2014) Occurrence of acidic pharmaceu- ticals and personal care products in Turia River Basin: from waste to drinking water. Sci Total Environ 484:53-63. https://doi.org/10. 1016/j.scitotenv.2014.02.085 otwiera się w nowej karcie
  8. Ciak J, Hahn FE (1958) Mechanisms of action of antibiotics I.: additive action of chloramphenicol and tetracyclines on the growth of Escherichia coli. J Bacteriol 75:125-129 otwiera się w nowej karcie
  9. Corada-Fernández C, Jiménez-Martínez J, Candela L, González-Mazo E, Lara-Martín PA (2015) Occurrence and spatial distribution of emerging contaminants in the unsaturated zone. Case study: Guadalete River basin (Cadiz. Spain). Chemosphere 119:131-137. https://doi.org/10.1016/j.chemosphere.2014.04.098 otwiera się w nowej karcie
  10. European Medicines Agency (2006) European Medicines Agency. Committee for Medicinal Products for Human Use. Pre- authorization evaluation of medicines for human use. Guideline on the environmental risk assessment of medicinal products for human use. EMEA/CHMP/SWP/4447/00. 1-12 otwiera się w nowej karcie
  11. European Medicines Agency (2011) Committee for Medicinal Products for Veterinary Use. Guideline on environmental impact assessment for veterinary medicinal products. EMA/CVMP/ERA/418282/ 2005. 1-77 otwiera się w nowej karcie
  12. Faust M, Altenburger R, Backhaus T, Bodeker W, Scholze M, Grimme LH (2000) Predictive assessment of the aquatic toxicity of multiple chemical mixtures. J Environ Qual 29:1063-1068. https://doi.org/ 10.2134/jeq2000.00472425002900040005x otwiera się w nowej karcie
  13. Focazio MJ, Kolpin DW, Barnes KK, Furlong ET, Meyer MT, Zaugg SD, Barber LB, Thruman ME (2008) A national reconnaissance for pharmaceutical and other organic wastewater contaminants in the United States. Untreated drinking water sources. Sci Total Environ 402:201-216. https://doi.org/10.1016/j.scitotenv.2008.02.021 otwiera się w nowej karcie
  14. Gutiérrez C, Fernández C, Escuer M, Campos-Herrera R, Rodríguez MEB, Carbonell G, Martín JAR (2016) Effect of soil properties, heavy metals and emerging contaminants in the soil nematodes di- versity. Environ Pollut 213:184-194. https://doi.org/10.1016/j. envpol.2016.02.012 otwiera się w nowej karcie
  15. Halling-Sørensen B, Nielsen SN, Lanzky PF, Ingerslev F, Lützhøft HH, Jørgensen SE (1998) Occurrence, fate and effects of pharmaceutical substances in the environment-a review. Chemosphere 36:357- 393. https://doi.org/10.1016/S0045-6535(97)00354-8 otwiera się w nowej karcie
  16. Hu X, Zhou Q, Luo Y (2010) Occurrence and source analysis of typical veterinary antibiotics in manure, soil, vegetables and groundwater from organic vegetable bases, northern China. Environ Pollut 158: 2992-2998. https://doi.org/10.1016/j.envpol.2010.05.023 otwiera się w nowej karcie
  17. Ingram T, Richter U, Mehling T, Smirnova I (2011) Modelling of pH dependent n-octanol/water partition coefficients of ionizable phar- maceuticals. Fluid Phase Equilibr 305:197-203. https://doi.org/10. 1016/j.fluid.2011.04.006 otwiera się w nowej karcie
  18. Jones JG, Morrison GA (1962) The bacteriostatic actions of tetracycline and oxytetracycline. J Pharm Pharmacol 14:808-824. https://doi. org/10.1111/j.2042-7158.1962.tb11181.x/abstract otwiera się w nowej karcie
  19. Kalkhambkar RG, Kulkarni GM, Kadakol JC, Aridoss G, Jeong YT, Kulkarni MV (2013) Synthesis, characterization and antimicrobial studies of novel benzodipyran analog of chloramphenicol. J Heterocyclic Chem 50:1108-1115. https://doi.org/10.1002/jhet. 1586 otwiera się w nowej karcie
  20. Kienzler A, Bopp SK, van der Linden S, Berggren E, Worth A (2016) Regulatory assessment of chemical mixtures: requirements, current approaches and future perspectives. Regul Toxicol Pharmacol 80: 321-334. https://doi.org/10.1016/j.yrtph.2016.05.020 otwiera się w nowej karcie
  21. Knopp D, Deng A, Letzel M, Taggart M, Himmelsbach M, Zhu Q-Z, Perobner I, Kudłak B, Frey S, Sengl M, Buchberger W, Hutchinson C, Cunningham A, Pain D, Cuthbert R, Raab A, Meharg A, Swan G, Jhala Y, Prakash V, Rahmani A, Quevedo M (2007) Niessner R chapter 13: Immunological determination of the pharmaceutical diclofenac in environmental and biological samples. In: Kennedy IR, Solomon K, Gee S, Crosnan A, Wang S (eds) Rational Environment Management of Agrochemicals Risk Assessment. otwiera się w nowej karcie
  22. Monitoring. and Remedial Action. Oxford University Press, Oxford Kudłak B, Wolska L, Namieśnik J (2011) Determination of EC50 toxicity data of selected heavy metals toward Heterocypris incongruens and their comparison to Bdirect-contact^and microbiotests. Environ Monit Assess 174:509-516. https://doi.org/10.1007/s10661-010- 1474-8 otwiera się w nowej karcie
  23. Kudłak B, Wieczerzak M, Yotova G, Tsakovski S, Simeonov V, Namieśnik J (2016) Environmental risk assessment of Polish waste- water treatment plant activity. Chemosphere 160:181-188. https:// doi.org/10.1016/j.chemosphere.2016.06.086 otwiera się w nowej karcie
  24. Li J, Dodgen L, Ye Q, Gan J (2013) Degradation kinetics and metabolites of carbamazepine in soil. Environ Sci Technol 47:3678-3684. https://doi.org/10.1021/es304944c otwiera się w nowej karcie
  25. Lonappan L, Brar SK, Das RK, Verma M, Surampalli RY (2016) Diclofenac and its transformation products: environmental occur- rence and toxicity-a review. Environ Int 96:127-138. https://doi. org/10.1016/j.envint.2016.09.014 otwiera się w nowej karcie
  26. Machatha SG, Yalkowsky SH (2005) Comparison of the octanol/water partition coefficients calculated by ClogP®, ACDlogP and KowWin® to experimentally determined values. Int J Phar 294: 185-192. https://doi.org/10.1016/j.ijpharm.2005.01.023 otwiera się w nowej karcie
  27. Miller EL, Nason SL, Karthikeyan KG, Pedersen JA (2016) Root uptake of pharmaceuticals and personal care product ingredients. Environ Sci Technol 50:525-541. https://doi.org/10.1021/acs.est.5b01546 otwiera się w nowej karcie
  28. Na G, Fang X, Cai Y, Ge L, Zong H, Yuan X, Zhang Z (2013) Occurrence, distribution, and bioaccumulation of antibiotics in coastal environment of Dalian. China. Mar Pollut Bull 69:233- 237. https://doi.org/10.1016/j.marpolbul.2012.12.028 otwiera się w nowej karcie
  29. Pan M, Chu LM (2016) Adsorption and degradation of five selected antibiotics in agricultural soil. Sci Total Environ 545:48-56. https://doi.org/10.1016/j.scitotenv.2015.12.040 otwiera się w nowej karcie
  30. Pan M, Wong CK, Chu LM (2014) Distribution of antibiotics in wastewater-irrigated soils and their accumulation in vegetable crops in the Pearl River Delta. Southern China. J Agric Food Chem 62: 11062-11069. https://doi.org/10.1021/jf503850v otwiera się w nowej karcie
  31. Phytotoxkit (2004) Seed germination and early growth microbiotest with higher plants. Standard operational procedure. Nazareth, Belgium: MicroBioTests Inc. otwiera się w nowej karcie
  32. Riemenschneider C, Al-Raggad M, Moeder M, Seiwert B, Salameh E, Reemtsma T (2016) Pharmaceuticals, their metabolites and other polar pollutants in field-grown vegetables irrigated with treated mu- nicipal wastewater. J Agric Food Chem 64:5784-5792. https://doi. org/10.1021/acs.jafc.6b01696 otwiera się w nowej karcie
  33. Semple KT, Doick KJ, Jones KC, Burauel P, Craven A, Harms H (2004) Defining bioavailability and bioaccessibility of contaminated soil and sediment is complicated. Environ Sci Technol 38:228-231. https://doi.org/10.1021/es040548w otwiera się w nowej karcie
  34. Shi H, Yang Y, Liu M, Yan C, Yue H, Zhou J (2014) Occurrence and distribution of antibiotics in the surface sediments of the Yangtze Estuary and nearby coastal areas. Mar Pollut Bull 83:317-323. https://doi.org/10.1016/j.marpolbul.2014.04.034 otwiera się w nowej karcie
  35. Styszko K (2016) Sorption of emerging organic micropollutants onto fine sediments in a water supply dam reservoir, Poland. J Soils Sediments 16:677-686. https://doi.org/10.1007/s11368-015-1239-7 otwiera się w nowej karcie
  36. ter Laak TL, Gebbink WA, Tolls J (2006) The effect of pH and ionic strength on the sorption of sulfachloropyridazine, tylosin, and oxy- tetracycline to soil. Environ Toxicol Chem 25:904-911. https://doi. org/10.1897/05-232R.1/abstract otwiera się w nowej karcie
  37. Thyss A, Kubar J, Milano G, Namer M, Schneider M (1986) Clinical and pharmacokinetic evidence of a life-threatening interaction between methotrexate and ketoprofen. Lancet 327:256-258. https://doi.org/ 10.1016/S0140-6736(86)90786-5 otwiera się w nowej karcie
  38. Tixier C, Singer HP, Oellers S, Müller SR (2003) Occurrence and fate of carbamazepine, clofibric acid, diclofenac, ibuprofen, ketoprofen and naproxen in surface waters. Environ Sci Technol 37:1061-1068. https://doi.org/10.1021/es025834r otwiera się w nowej karcie
  39. Wieczerzak M, Kudłak B, Namieśnik J (2015) Environmentally oriented models and methods for the evaluation of drug × drug interaction effects. Crit Rev Anal Chem 45:131-155. https://doi.org/10.1080/ 10408347.2014.899467 otwiera się w nowej karcie
  40. Wieczerzak M, Kudłak B, Yotova G, Nedyalkova M, Tsakovski S, Simeonov V, Namieśnik J (2016a) Modeling of pharmaceuticals mixtures toxicity with deviation ratio and best-fit functions models. Sci Total Environ 571:259-268. https://doi.org/10.1016/j.scitotenv. 2016.07.186 otwiera się w nowej karcie
  41. Wieczerzak M, Namieśnik J, Kudłak B (2016b) Bioassays as one of the Green Chemistry tools for assessing environmental quality: a re- view. Environ Int 94:341-361. https://doi.org/10.1016/j.envint. 2016.05.017 otwiera się w nowej karcie
  42. Wu X, Dodgen LK, Conkle JL, Gan J (2015) Plant uptake of pharmaceu- tical and personal care products from recycled water and biosolids: a review. Sci Total Environ 536:655-666. https://doi.org/10.1016/j. scitotenv.2015.07.129 otwiera się w nowej karcie
  43. Zhang Y, Price GW, Jamieson R, Burton D, Khosravi K (2017) Sorption and desorption of selected non-steroidal anti-inflammatory drugs in an agricultural loam-textured soil. Chemosphere 174:628-637. https://doi.org/10.1016/j.chemosphere.2017.02.027 otwiera się w nowej karcie
  44. Zhao Y, Liu F, Qin X (2017) Adsorption of diclofenac onto goethite: adsorption kinetics and effects of pH. Chemosphere 180:373-378. https://doi.org/10.1016/j.chemosphere.2017.04.007 otwiera się w nowej karcie
  45. Zhou LJ, Ying GG, Zhao JL, Yang JF, Wang L, Yang B, Liu S (2011) Trends in the occurrence of human and veterinary antibiotics in the sediments of the Yellow River, Hai River and Liao River in northern China. Environ Pollut 159:1877-1885. https://doi.org/10.1016/j. envpol.2011.03.034 otwiera się w nowej karcie
Źródła finansowania:
Weryfikacja:
Politechnika Gdańska

wyświetlono 119 razy

Publikacje, które mogą cię zainteresować

Meta Tagi