Indoor air quality of everyday use spaces dedicated to specific purposes—a review - Publikacja - MOST Wiedzy

Wyszukiwarka

Indoor air quality of everyday use spaces dedicated to specific purposes—a review

Abstrakt

According to literature data, some of the main factors which significantly affect the quality of the indoor environment in residential households or apartments are human activities such as cooking, smoking, cleaning, and indoor exercising. The paper presents a literature overview related to air quality in everyday use spaces dedicated to specific purposes which are integral parts of residential buildings, such as kitchens, basements, and individual garages. Some aspects of air quality in large-scale car parks, as a specific type of indoor environment, are also discussed. All those areas are characterized by relatively short time use. On the other hand, high and very high concentration levels of xenobiotics can be observed, resulting in higher exposure risk. The main compounds or group of chemical compounds are presented and discussed. The main factors influencing the type and amount of chemical pollutants present in the air of such areas are indicated.

Cytowania

  • 1 6

    CrossRef

  • 1 5

    Web of Science

  • 1 8

    Scopus

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuł w czasopiśmie wyróżnionym w JCR
Opublikowano w:
ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH nr 25, strony 2065 - 2082,
ISSN: 0944-1344
Język:
angielski
Rok wydania:
2018
Opis bibliograficzny:
Marć M., Śmiełowska M., Namieśnik J., Zabiegała B.: Indoor air quality of everyday use spaces dedicated to specific purposes—a review// ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH. -Vol. 25, nr. 3 (2018), s.2065-2082
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1007/s11356-017-0839-8
Bibliografia: test
  1. Abdullahi KL, Delgado-Saborit JM, Harrison RM (2013) Emissions and indoor concentrations of particulate matter and its specific chemical components from cooking: a review. Atmos Environ 71:260-294. https://doi.org/10.1016/j.atmosenv.2013.01.061 otwiera się w nowej karcie
  2. Arbex MA, Martins LC, Pereira LAA, Negrini F, Cardoso AA, Melchert WR, Arbex RF, Saldiva PHN, Zanobetti A, Braga ALF (2007) Indoor NO 2 air pollution and lung function of professional cooks. otwiera się w nowej karcie
  3. Braz J Med Biol Res 40(4):527-534. https://doi.org/10.1590/ S0100-879X2007000400011 otwiera się w nowej karcie
  4. Armendáriz-Arnez C, Edwards RD, Johnson M, Rosas IA, Espinosa F, Masera OR (2010) Indoor particle size distributions in homes with open fires and improved Patsari cook stoves. Atmos Environ 44(24): 2881-2886. https://doi.org/10.1016/j.atmosenv.2010.04.049 otwiera się w nowej karcie
  5. Aschmann SM, Arey J, Atkinson R (2002) OH radical formation from the gas-phase reactions of O 3 with a series of terpenes. Atmos Environ 36(27):4347-4355. https://doi.org/10.1016/S1352-2310(02)00355-2 otwiera się w nowej karcie
  6. Atkinson R (2000) Atmospheric chemistry of VOCs and NO x . Atmos Environ 34(12-14):2063-2101. https://doi.org/10.1016/S1352- 2310(99)00460-4 otwiera się w nowej karcie
  7. Baeza A, García-Paniagua J, Guillén J, Montalbán B (2018) Influence of architectural style on indoor radon concentration in a radon prone area: a case study. Sci Total Environ 610-611:258-266. https://doi. org/10.1016/j.scitotenv.2017.08.056 otwiera się w nowej karcie
  8. Bates MN, Chandyo RK, Valentiner-Branth P, Pokhrel AK, Mathisen M, Basnet S, Shrestha PS, Strand TA, Smith KR (2013) Acute lower respiratory infection in childhood and household fuel use in Bhaktapur, Nepal. Environ Health Perspect 121(5):637-642. https://doi.org/10.1289/ehp.1205491 otwiera się w nowej karcie
  9. Batterman S, Hatzivasilis G, Jia C (2006) Concentrations and emissions of gasoline and other vapors from residential vehicle garages. Atmos Environ 40(10):1828-1844. https://doi.org/10.1016/j.atmosenv. 2005.11.017 otwiera się w nowej karcie
  10. Batterman S, Jia C, Hatzivasilis G (2007) Migration of volatile organic compounds from attached garages to residences: a major exposure source. Environ Res 104(2):224-240. https://doi.org/10.1016/j. envres.2007.01.008 otwiera się w nowej karcie
  11. Baumgartner J, Schauer JJ, Ezzati M, Lu L, Cheng C, Patz J, Bautista LE (2011) Patterns and predictors of personal exposure to indoor air pollution from biomass combustion among women and children in rural China. Indoor Air 21(6):479-488. https://doi.org/10.1111/j. 1600-0668.2011.00730.x otwiera się w nowej karcie
  12. Begum BA, Paul SK, Hossain MD, Biswas SK (2009) Indoor air pollu- tion from particulate matter emissions in different households in Environ Sci Pollut Res rural areas of Bangladesh. Build Environ 44(5):898-903. https://doi. org/10.1016/j.buildenv.2008.06.005 otwiera się w nowej karcie
  13. Bensch G, Grimm M, Peters J (2015) Why do households forego high returns from technology adoption? Evidence from improved cooking stoves in Burkina Faso. J Econ Behav Organ 116:187- 205. https://doi.org/10.1016/j.jebo.2015.04.023 otwiera się w nowej karcie
  14. Bhargava A, Khanna RN, Bhargava SK, Kumar S (2004) Exposure risk to carcinogenic PAHs in indoor-air during biomass combustion whilst cooking in rural India. Atmos Environ 38(28):4761-4767. https://doi.org/10.1016/j.atmosenv.2004.05.012 otwiera się w nowej karcie
  15. Bruce N, McCracken J, Albalak R, Schei MA, Smith KR, Lopez V, West C (2004) Impact of improved stoves, house construction and child location on levels of indoor air pollution exposure in young Guatemalan children. J Expo Anal Environ Epidemiol 14(Suppl): 26-33 otwiera się w nowej karcie
  16. Bruinen de Bruin Y, Koistinen K, Kephalopoulos S, Geiss O, Tirendi S, Kotzias D (2008) Characterization of urban inhalation exposures to benzene, formaldehyde and acetaldehyde in the European Union. otwiera się w nowej karcie
  17. Environ Sci Pollut Res 15(5):417-430. https://doi.org/10.1007/ s11356-008-0013-4 otwiera się w nowej karcie
  18. Buonanno G, Morawska L, Stabile L (2009) Particle emission factors during cooking activities. Atmos Environ 43(20):3235-3242. https://doi.org/10.1016/j.atmosenv.2009.03.044 otwiera się w nowej karcie
  19. Chartier R, Phillips M, Mosquin P, Elledge M, Bronstein K, Nandasena S, Thornburg V, Thornburg J, Rodes C (2017) A comparative study of human exposures to household air pollution from commonly used cookstoves in Sri Lanka. Indoor Air 27(1):147-159. https://doi.org/ 10.1111/ina.12281 otwiera się w nowej karcie
  20. Chen JW, Wang SL, Hsieh DPH, Yang HH, Lee HL (2012) Carcinogenic potencies of polycyclic aromatic hydrocarbons for back-door neigh- bors of restaurants with cooking emissions. Sci Total Environ 417- 418:68-75. https://doi.org/10.1016/j.scitotenv.2011.12.012 otwiera się w nowej karcie
  21. Chen Y, Du W, Shen G, Zhuo S, Zhu X, Shen H, Huang Y, Su S, Lin N, Pei L, Zheng X, Wu J, Duan Y, Wang X, Liu W, Wong M, Tao S (2017a) Household air pollution and personal exposure to nitrated and oxygenated polycyclic aromatics (PAHs) in rural households: influence of household cooking energies. Indoor Air 27(1):169-178. https://doi.org/10.1111/ina.12300 otwiera się w nowej karcie
  22. Chen Y, Li X, Zhu T, Han Y, Lv D (2017b) PM 2.5 -bound PAHs in three indoor and one outdoor air in Beijing: concentration, source and health risk assessment. Sci Total Environ 586:255-264. https://doi. org/10.1016/j.scitotenv.2017.01.214 otwiera się w nowej karcie
  23. Cheng JH, Lee YS, Chen KS (2016) Carbonyl compounds in dining areas, kitchens and exhaust streams in restaurants with varying cooking methods in Kaohsiung, Taiwan. J Environ Sci 41:218- 226. https://doi.org/10.1016/j.jes.2015.06.006 otwiera się w nowej karcie
  24. Curci G, Beekmann M, Vautard R, Smiatek G, Steinbrecher R, Theloke J, Friedrichet R (2009) Modelling study of the impact of isoprene and terpene biogenic emissions on European ozone levels. Atmos Environ 43(7):1444-1455. https://doi.org/10.1016/j.atmosenv. 2008.02.070 otwiera się w nowej karcie
  25. D'Souza JC, Jia CR, Mukherjee B, Batterman S (2009) Ethnicity, hous- ing and personal factors as determinants of VOC exposures. Atmos Environ 43(18):2884-2892. https://doi.org/10.1016/j.atmosenv. 2009.03.017 otwiera się w nowej karcie
  26. de Castro BP, Machado GS, Bauerfeldt GF, Fortes JDN, Martins EM (2015) Assessment of the BTEX concentrations and reactivity in a confined parking area in Rio de Janeiro, Brazil. Atmos Environ 104: 22-26. https://doi.org/10.1016/j.atmosenv.2015.01.013 otwiera się w nowej karcie
  27. Demir A (2015) Investigation of air quality in the underground and aboveground multistorey car parks in terms of exhaust emissions. Procedia Soc Behav Sci 195:2601-2611. https://doi.org/10.1016/j. sbspro.2015.06.461 otwiera się w nowej karcie
  28. Ding J, Zhong J, Yang Y, Li B, Shen G, Su Y, Wang C, Li W, Shen H, Wang B, Wang R, Huang Y, Zhang Y, Cao H, Zhu Z, Simonich SLM, Tao S (2012) Occurrence and exposure to polycyclic aromatic hydrocarbons and their derivatives in a rural Chinese home through biomass fueled cooking. Environ Pollut 169:160-166. https://doi. org/10.1016/j.envpol.2011.10.008 otwiera się w nowej karcie
  29. Dodson RE, Levy JI, Spengler JD, Shine JP, Bennett DH (2008) Influence of basements, garages, and common hallways on indoor residential volatile organic compound concentrations. Atmos Environ 42(7):1569-1581. https://doi.org/10.1016/j.atmosenv. 2007.10.088 otwiera się w nowej karcie
  30. Du L, Batterman S, Godwin C, Rowe Z, Chin J-Y (2015) Air exchange rates and migration of VOCs in basements and residences. Indoor Air 26(6):598-609 otwiera się w nowej karcie
  31. Duci A, Papakonstantinou K, Chaloulakou A, Markatos N (2004) Numerical approach of carbon monoxide concentration dispersion in an enclosed garage. Build Environ 39(9):1043-1048. https://doi. org/10.1016/j.buildenv.2003.11.005 otwiera się w nowej karcie
  32. Edokpolo B, QJ Y, Connell D (2014) Health risk assessment of ambient air concentrations of benzene, toluene and xylene (BTX) in Service Station environments. Int J Environ Res Public Health 11(6):6354- 6374. https://doi.org/10.3390/ijerph110606354 otwiera się w nowej karcie
  33. Edwards R, Princevac M, Weltman R, Ghasemian M, Arora NK, Bond T (2017) Modeling emission rates and exposures from outdoor cooking. Atmos Environ 164:50-60. https://doi.org/10.1016/j. atmosenv.2017.05.029 otwiera się w nowej karcie
  34. Gao J, Jian Y, Cao C, Chen L, Zhang X (2015) Indoor emission, disper- sion and exposure of total particle-bound polycyclic aromatic hy- drocarbons during cooking. Atmos Environ 120:191-199. https:// doi.org/10.1016/j.atmosenv.2015.08.030 otwiera się w nowej karcie
  35. Geiss O, Giannopoulos G, Tirendi S, Barrero-Moreno J, Larsen BR, Kotzias D (2011) The AIRMEX study-VOC measurements in public buildings and schools/kindergartens in eleven European cit- ies: statistical analysis of the data. Atmos Environ 45(22):3676- 3684. https://doi.org/10.1016/j.atmosenv.2011.04.037 otwiera się w nowej karcie
  36. Giechaskiel B, Maricq M, Ntziachristos L, Dardiotis C, Wang X, Axmann H, Bergmann A, Schindler W (2014) Review of motor vehicle particulate emissions sampling and measurement: from smoke and filter mass to particle number. J Aerosol Sci 67:48-86. https://doi.org/10.1016/j.jaerosci.2013.09.003 otwiera się w nowej karcie
  37. Glorennec P, Bonvallot N, Mandin C, Goupil G, Pernelet-Joly V, Millet M, Filleul L, Le Moullec Y, Alary R (2008) Is a quantitative risk assessment of air quality in underground parking garages possible? Indoor Air 18(4):283-292. https://doi.org/10.1111/j.1600-0668. 2008.00529.x otwiera się w nowej karcie
  38. Graham LA, Noseworthy L, Fugler D, O'Leary K, Karman D, Grande C (2004) Contribution of vehicle emissions from an attached garage to residential indoor air pollution levels. J Air Waste Manage Assoc 54(5):563-584. https://doi.org/10.1080/10473289.2004.10470931 otwiera się w nowej karcie
  39. Guo H, Lee SC, Li WM, Cao JJ (2003) Source characterization of BTEX in indoor microenvironments in Hong Kong. Atmos Environ 37(1): 73-82. https://doi.org/10.1016/S1352-2310(02)00724-0 otwiera się w nowej karcie
  40. Hameed AAA, Yasser IH, Khoder IM (2004) Indoor air quality during renovation actions: a case study. J Environ Monit 6(9):740-744. https://doi.org/10.1039/b402995j otwiera się w nowej karcie
  41. Hasan M, Salam A, Alam AMS (2009) Identification and characterization of trace metals in black solid materials deposited from biomass burning at the cooking stoves in Bangladesh. Biomass Bioenergy 33(10):1376-1380. https://doi.org/10.1016/j.biombioe.2009.05.023 otwiera się w nowej karcie
  42. Hazrati S, Rostami R, Farjaminezhad M, Fazlzadeh M (2016) Preliminary assessment of BTEX concentrations in indoor air of residential buildings and atmospheric ambient air in Ardabil, Iran. Atmos Environ 132:91-97. https://doi.org/10.1016/j.atmosenv. 2016.02.042 otwiera się w nowej karcie
  43. Hecht SS, Seow A, Wang M, Wang R, Meng L, Koh WP, Carmella SG, Chen M, Han S, Yu MC, Yuan JM (2010) Elevated levels of volatile organic carcinogen and toxicant biomarkers in Chinese women who regularly cook at home. Cancer Epidemiol Biomark Prev 19(5): 1185-1192. https://doi.org/10.1158/1055-9965.EPI-09-1291 otwiera się w nowej karcie
  44. Environ Sci Pollut Res otwiera się w nowej karcie
  45. Hollbacher E, Ters T, Rieder-Gradinger C, Srebotnik E (2017) Emissions of indoor air pollutants from six user scenarios in a model room. Atmos Environ 150:389-394. https://doi.org/10.1016/j.atmosenv. 2016.11.033 otwiera się w nowej karcie
  46. Hubbard HF, Coleman BK, Sarwar G, Corsi RL (2005) Effects of an ozone-generating air purifier on indoor secondary particles in three residential dwellings. Indoor Air 15(6):432-444. https://doi.org/10. 1111/j.1600-0668.2005.00388.x otwiera się w nowej karcie
  47. Huboyo HS, Tohno S, Cao R (2011) Indoor PM 2.5 characteristics and CO concentration related to water-based and oil-based cooking emis- sions using a gas stove. Aerosol Air Qual Res 11:401-411 otwiera się w nowej karcie
  48. Hun DE, Corsi RL, Morandi MT, Siegel JA (2011) Automobile proximity and indoor residential concentrations of BTEX and MTBE. Build Environ 46(1):45-53. https://doi.org/10.1016/j.buildenv.2010.06. 015 otwiera się w nowej karcie
  49. IARC (2010) Household use of solid fuels and high-temperature frying, International Agency for Research on. Cancer, Lyon otwiera się w nowej karcie
  50. Jerneck A, Olsson L (2013) A smoke-free kitchen: initiating community based co-production for cleaner cooking and cuts in carbon emis- sions. J Clean Prod 60:208-215. https://doi.org/10.1016/j.jclepro. 2012.09.026 otwiera się w nowej karcie
  51. Jeuland MA, Bhojvaid V, Kar A, Lewis JJ, Patange O, Pattanayak SK, Ramanathanf N, Rehman IH, Tan Soo SJ, Ramanathanh V (2015) Preferences for improved cook stoves: evidence from rural villages in north India. Energ Econ 52:287-298. https://doi.org/10.1016/j. eneco.2015.11.010 otwiera się w nowej karcie
  52. Jiang C, Li D, Zhang P, Li J, Wang J, Yu J (2017) Formaldehyde and volatile organic compound (VOC) emissions from particleboard: identification of odorous compounds and effects of heat treatment. Build Environ 117:118-126. https://doi.org/10.1016/j.buildenv. 2017.03.004 otwiera się w nowej karcie
  53. Jo WK, Song KB (2001) Exposure to volatile organic compounds for individuals with occupations associated with potential exposure to motor vehicle exhaust and or gasoline vapor emissions. Sci Total Environ 269(1-3):25-37. https://doi.org/10.1016/S0048-9697(00) 00774-9 otwiera się w nowej karcie
  54. Katsoyiannis A, Leva P, Kotzias D (2008) VOC and carbonyl emissions from carpets: a comparative study using four types of environmental chambers. J Hazard Mater 152(2):669-676. https://doi.org/10.1016/ j.jhazmat.2007.07.058 otwiera się w nowej karcie
  55. Kauneliene V, Prasauskas T, Krugly E, Stasiulaitiene I, Ciuzas D, Seduikyte L, Martuzevicius D (2016) Indoor air quality in low en- ergy residential buildings in Lithuania. Build Environ 108:63-72. https://doi.org/10.1016/j.buildenv.2016.08.018 otwiera się w nowej karcie
  56. Kim KH, Pandey SK, Kabir E, Susaya J, Brown RCJ (2011) The modern paradox of unregulated cooking activities and indoor air quality. J Hazard Mater 195:1-10. https://doi.org/10.1016/j.jhazmat.2011.08. 037 otwiera się w nowej karcie
  57. Kim SR, Dominici F, Buckley TJ (2007) Concentrations of vehicle- related air pollutants in an urban parking garage. Environ Res 105(3):291-299. https://doi.org/10.1016/j.envres.2007.05.019 otwiera się w nowej karcie
  58. Klepeis NE, Nelson WC, Ott WR, Robinson JP, Tsang AM, Switzer P, Behar JV, Hern SC, Engelmann WH (2001) The National Human Activity Pattern Survey (NHAPS): a resource for assessing exposure to environmental pollutants. J Expo Analysis Environ Epidemiol 11(3):231-252. https://doi.org/10.1038/sj.jea.7500165 otwiera się w nowej karcie
  59. Kotzias D, Geiss O, Tirendi S, Barrero-Moreno J, Reina V, Gotti A, Cimino-Reale B, Marafante E, Sarigiannis D (2009) Exposure to multiple air contaminants in public buildings, schools and kinder- gartens the European indoor air monitoring and exposure assess- ment (AIRMEX) study. Fresenius Environ Bull 18:1-12
  60. Król S, Namieśnik J, Zabiegała B (2014) α-Pinene, 3-carene and d- limonene in indoor air of polish apartments: the impact on air quality and human exposure. Sci Total Environ 468-469:985-995. https:// doi.org/10.1016/j.scitotenv.2013.08.099 otwiera się w nowej karcie
  61. Kuo CY, Chang SH, Chien YC, Chiang FY, Wei YC (2006) Exposure to carcinogenic PAHs for the vendors of broiled food. J Expo Sci Environ Epidemiol 16(5):410-416. https://doi.org/10.1038/sj.jes. 7500466 otwiera się w nowej karcie
  62. Li A, Zhao Y, Jiang D, Hou X (2012) Measurement of temperature, relative humidity, concentration distribution and flow field in four typical Chinese commercial kitchens. Build Environ 56:139-150. https://doi.org/10.1016/j.buildenv.2012.03.001 otwiera się w nowej karcie
  63. Li Y, Xiang R (2013) Particulate pollution in an underground car park in Wuhan, China. Particuology 11(1):94-98. https://doi.org/10.1016/j. partic.2012.06.010 otwiera się w nowej karcie
  64. L'Orange C, Volckens J, DeFoort M (2012) Influence of stove type and cooking pot temperature on particulate matter emissions from bio- mass cook stoves. Energy Sustain Dev 16(4):448-455. https://doi. org/10.1016/j.esd.2012.08.008 otwiera się w nowej karcie
  65. Ma Y, Harrad S (2015) Spatiotemporal analysis and human exposure assessment on polycyclic aromatic hydrocarbons in indoor air, set- tled house dust, and diet: a review. Environ Iny 84:7-16. https://doi. org/10.1016/j.envint.2015.07.006 otwiera się w nowej karcie
  66. McCann LJ, Close R, Staines L, Weaver M, Gutter G, Leonardi GS (2013) Indoor carbon monoxide: a case study in England for detec- tion and interventions to reduce population exposure. J Environ Publ Health 2013:1-5. https://doi.org/10.1155/2013/735952 otwiera się w nowej karcie
  67. Marć M (2017) Problems and challenges associated with estimating the emissions of organic compounds from indoor materials. Trends Anal Chem 97:297-308. https://doi.org/10.1016/j.trac.2017.09.022 otwiera się w nowej karcie
  68. Marć M, Śmiełowska M, Zabiegała B (2016) Concentrations of monoaromatic hydrocarbons in the air of the underground car park and individual garages attached to residential buildings. Sci Total Environ 573:767-777. https://doi.org/10.1016/j.scitotenv.2016.08. 173 otwiera się w nowej karcie
  69. Masih A, Lall AS, Taneja A, Singhvi R (2017) Exposure profiles, sea- sonal variation and health risk assessment of BTEX in indoor air of homes at different microenvironments of a Terai province of north- ern India. Chemosphere 176:8-17. https://doi.org/10.1016/j. chemosphere.2017.02.105 otwiera się w nowej karcie
  70. Matsuzuki H, Ito A, Ayabe M, Haruyama Y, Tomita S, Katamoto S, Muto T (2011) The effects of work environments on thermal strain on workers in commercial kitchens. Ind Health 49(5):605-613. https://doi.org/10.2486/indhealth.MS1219 otwiera się w nowej karcie
  71. Molloy SB, Cheng M, Galbally IE, Keywood MD, Lawson JS, Powell JC, Gillett R, Dunne E, Selleck PW (2012) Indoor air quality in typical temperate zone Australian dwellings. Atmos Environ 54: 400-407. https://doi.org/10.1016/j.atmosenv.2012.02.031 otwiera się w nowej karcie
  72. Moolla R, Curtis CJ, Knight J (2015) Occupational exposure of diesel station workers to BTEX compounds at a bus depot. Int J Environ Res Public Health 12(4):4101-4115. https://doi.org/10.3390/ ijerph120404101 otwiera się w nowej karcie
  73. Moret S, Conte LS (2000) Polycyclic aromatic hydrocarbons in edible fats and oils: occurrence and analytical methods. J Chromatogr A 882(1- 2):245-253. https://doi.org/10.1016/S0021-9673(00)00079-0 otwiera się w nowej karcie
  74. Morrison GC, Nazaroff WW (2002) Ozone interactions with carpet: sec- ondary emissions of aldehydes. Environ Sci Technol 36(10):2185- 2192. https://doi.org/10.1021/es0113089 otwiera się w nowej karcie
  75. Nicolas M, Ramalho O, Maupetit F (2007) Reactions between ozone and building products: impact on primary and secondary emissions. Atmos Environ 41(15):3129-3138. https://doi.org/10.1016/j. atmosenv.2006.06.062 otwiera się w nowej karcie
  76. Orakij W, Chetiyanukornkul T, Kasahara C, Boongla Y, Chuesaard T, Furuuchi M, Hata M, Tang N, Hayakawa K, Toriba A (2017) Polycyclic aromatic hydrocarbons and their nitro derivatives from indoor biomass-fueled cooking in two rural areas of Thailand: a case study. Air Qual Atmos Health DOI 10(6):747-761. https://doi.org/ 10.1007/s11869-017-0467-y otwiera się w nowej karcie
  77. Papakonstantinou K, Chaloulakou A, Duc A, Vlachakis N, Markatos A (2003) Air quality in an underground garage: computational and Environ Sci Pollut Res experimental investigation of ventilation effectiveness. Energy Build 35(9):933-940. https://doi.org/10.1016/S0378-7788(03) 00020-3 otwiera się w nowej karcie
  78. Plaisance H, Blondel A, Desauziers V, Mocho P (2013) Field investiga- tion on the removal of formaldehyde in indoor air. Build Environ 70: 277-283. https://doi.org/10.1016/j.buildenv.2013.08.032 otwiera się w nowej karcie
  79. Pokhrel AK, Bates MN, Acharya J, Valentiner-Branth P, Chandyo RK, Shrestha PS, Raut AK, Smith KR (2015) PM 2.5 in household kitchens of Bhaktapur, Nepal, using four different cooking fuels. Atmos Environ 113:159-168. https://doi.org/10.1016/j.atmosenv. 2015.04.060 otwiera się w nowej karcie
  80. Raman P, Murali J, Sakthivadivel D, Vigneswaran VS (2009) Performance evaluation of three types of forced draft cook stoves using fuel wood and coconut shell. Biomass Bioenergy 49:333-340 otwiera się w nowej karcie
  81. Rehman IH, Ahmed T, Praveen PS, Karl A, Ramanathan V (2011) Black carbon emissions from biomass and fossil fuels in rural India. Atmos Chem Phys 11(14):7289-7299. https://doi.org/10.5194/acp-11- 7289-2011 otwiera się w nowej karcie
  82. Roulet CA (2001) Indoor environment quality in buildings and its impact on outdoor environment. Energ Buildings 33(3):183-191. https:// doi.org/10.1016/S0378-7788(00)00080-3 otwiera się w nowej karcie
  83. Saha S, Guha A, Roy S (2012) Experimental and computational investi- gation of indoor air quality inside several community kitchens in a large campus. Build Environ 52:177-190. https://doi.org/10.1016/j. buildenv.2011.10.015 otwiera się w nowej karcie
  84. Salam A, Hasan M, Begum BA, Begum M, Biswas SK (2013) Chemical characterization of biomass burning deposits from cooking stoves in Bangladesh. Biomass Bioenergy 52:122-130. https://doi.org/10. 1016/j.biombioe.2013.03.010 otwiera się w nowej karcie
  85. Sarigiannis DA, Karakitsios SP, Gotti A, Liakos IL, Katsoyiannis A (2011) Exposure to major volatile organic compounds and carbonyls in European indoor environments and associated health risk. Environ Int 37(4):743-765. https://doi.org/10.1016/j.envint.2011.01.005 otwiera się w nowej karcie
  86. Saud T, Saxena M, Singh DP, Dahiya M, Sharma SK, Datta A, Gadi R, Mandal TK (2013) Spatial variation of chemical constituents from the burning of commonly used biomass fuels in rural areas of the Indo-Gangetic Plain (IGP), India. Atmos Environ 71:158-169. https://doi.org/10.1016/j.atmosenv.2013.01.053 otwiera się w nowej karcie
  87. Schlink U, Roder S, Kohajda T, Wissenbach DK, Franck U, Lehmann I (2016) A framework to interpret passively sampled indoor-air VOC concentrations in health studies. Build Environ 105:198-209. https://doi.org/10.1016/j.buildenv.2016.05.033 otwiera się w nowej karcie
  88. Sidhu MK, Ravindra K, Mor S, John S (2017) Household air pollution from various types of rural kitchens and its exposure assessment. Sci Total Environ 586:419-429. https://doi.org/10.1016/j.scitotenv. 2017.01.051 otwiera się w nowej karcie
  89. Sillman S (1999) The relation between ozone, NO x and hydrocarbons in urban and polluted rural environments. Atmos Environ 33(12): 1821-1845. https://doi.org/10.1016/S1352-2310(98)00345-8 otwiera się w nowej karcie
  90. Singh A, Nair KC, Kamal R, Bihari V, Gupta MK, Mudiam MKR, Satyanarayana GNV, Raj A, Haq I, Shukla NK, Khan AH, Srivastava AK (2016) Assessing hazardous risks of indoor airborne polycyclic aromatic hydrocarbons in the kitchen and its association with lung functions and urinary PAH metabolites in kitchen workers. Clin Chim Acta 452:204-213. https://doi.org/10.1016/j. cca.2015.11.020 otwiera się w nowej karcie
  91. Singh S, Gupta GP, Kumar B, Kulshrestha UC (2014) Comparative study of indoor air pollution using traditional and improved cooking stoves in rural households of northern India. Energy Sustain Dev 19:1-6. https://doi.org/10.1016/j.esd.2014.01.007 otwiera się w nowej karcie
  92. Słomińska M, Konieczka P, Namieśnik J (2014) The fate of BTEX com- pounds in ambient air. Crit Rev Environ Sci Technol 44(5):455-472. https://doi.org/10.1080/10643389.2012.728808 otwiera się w nowej karcie
  93. Sofuoglu SC, Toprak M, Inal F, Cimrin AH (2015) Indoor air quality in a restaurant kitchen using margarine for deep-frying. Environ Sci Pollut Res 22(20):15703-15711. https://doi.org/10.1007/s11356- 015-4762-6 otwiera się w nowej karcie
  94. Soto-Garcia L, Ashley WJ, Bregg S, Walier D, LeBouf R, Hopke PK, Rossner A (2015) VOCs emissions from multiple wood pellet types and concentrations in indoor air. Energy Fuel 29(10):6485-6493. https://doi.org/10.1021/acs.energyfuels.5b01398 otwiera się w nowej karcie
  95. Stazi F, Naspi F, Ulpiani G, Di Perna D (2017) Indoor air quality and thermal comfort optimization in classrooms developing an automat- ic system for windows opening and closing. Energ Buildings 139: 732-746. https://doi.org/10.1016/j.enbuild.2017.01.017 otwiera się w nowej karcie
  96. Steinemann A, Wargocki P, Rismanchi B (2017) Ten questions concerning green buildings and indoor air quality. Build Environ 112:351-358. https://doi.org/10.1016/j.buildenv.2016.11.010 otwiera się w nowej karcie
  97. Suryawanshi S, Chauhan AS, Verma R, Gupta T (2016) Identification and quantification of indoor air pollutant sources within a residential academic campus. Sci Total Environ 569-570:46-52. https://doi. org/10.1016/j.scitotenv.2016.06.061 otwiera się w nowej karcie
  98. Svedahl S, Svendsen K, Qvenild T, Sjaastad AK, Hilt B (2009) Short term exposure to cooking fumes and pulmonary function. J Occup Med Toxicol 4:4-9 otwiera się w nowej karcie
  99. Szczurek A, Maciejewska M, Połoczański R, Teuerle M, Wyłomańska A (2015) Dynamics of carbon dioxide concentration in indoor air. Stoch Env Res Risk A 28(8):2193-2199 otwiera się w nowej karcie
  100. Torkmahalleh MA, Gorjinezhad S, Unluevcek HS, Hopke PK (2017) Review of factors impacting emission/concentration of cooking gen- erated particulate matter. Sci Total Environ 586:1046-1056. https:// doi.org/10.1016/j.scitotenv.2017.02.088 otwiera się w nowej karcie
  101. Vainiotalo S, Matveinen K (1993) Cooking fumes as a hygienic problem in the food and catering industries. Am Ind Hyg Assoc J 54(7):376- 382. https://doi.org/10.1080/15298669391354838 otwiera się w nowej karcie
  102. Vukovic G, Urosevic MA, Razumenic I, Kuzmanoski M, Pergal M, Skrivanj S, Popovi A (2014) Air quality in urban parking garages (PM 10 , major and trace elements, PAHs): instrumental measure- ments vs. active moss biomonitoring. Atmos Environ 85:31-40. https://doi.org/10.1016/j.atmosenv.2013.11.053 otwiera się w nowej karcie
  103. Wang F, Ward IC (2000) The development of a radon entry model for a house with a cellar. Build Environ 35(7):615-631. https://doi.org/ 10.1016/S0360-1323(99)00052-9 otwiera się w nowej karcie
  104. Wei F, Nie G, Zhou B, Wang L, Ma Y, Peng S, Ou S, Qin J, Zhang L, Li S, Zou R, Zeng X, Zhang Z, Zou Y (2017) Association between Chinese cooking oil fumes and sleep quality among a middle-aged Chinese population. Environ Pollut 27:543-551 otwiera się w nowej karcie
  105. Weschler CJ (2009) Changes in indoor pollutants since the 1950s. Atmos Environ 43(1):153-169. https://doi.org/10.1016/j.atmosenv.2008. 09.044 otwiera się w nowej karcie
  106. Yamamoto SS, Louis VR, Sié A, Sauerborn R (2014) Biomass smoke in Burkina Faso: what is the relationship between particulate matter, carbon monoxide, and kitchen characteristics? Environ Sci Pollut Res 21(4):2581-2591. https://doi.org/10.1007/s11356-013-2062-6 otwiera się w nowej karcie
  107. Yip F, Christensen B, Sircar K, Naeher L, Bruce N, Pennise D, Lozier M, Pilishvili T, Farrar JL, Stanistreet D, Nyagol R, Muoki J, de Beer L, Sage M, Kapil V (2017) Assessment of traditional and improved stove use on household air pollution and personal exposures in rural western Kenya. Environ Int 99:185-191. https://doi.org/10.1016/j. envint.2016.11.015 otwiera się w nowej karcie
  108. Zhao Y, Hu M, Slanina S, Zhang Y (2007) The molecular distribution of fine particulate organic matter emitted from Western-style fast food cooking. Atmos Environ 41(37):8163-8171. https://doi.org/10. 1016/j.atmosenv.2007.06.029 otwiera się w nowej karcie
  109. Zhu L, Wang J (2003) Sources and patterns of polycyclic aromatic hy- drocarbons pollution in kitchen air, China. Chemosphere 50(5):611- 618. https://doi.org/10.1016/S0045-6535(02)00668-9 otwiera się w nowej karcie
  110. Zielińska B, Fujita E, Ollison W, Campbell D, Sagebiel J, Merritt P, Smith L (2012) Relationships of attached garage and home exposures to fuel type and emission levels of garage sources. Air Qual Atmos Health 5(1):89-100. https://doi.org/10.1007/s11869-010-0121-4 otwiera się w nowej karcie
Weryfikacja:
Politechnika Gdańska

wyświetlono 29 razy

Publikacje, które mogą cię zainteresować

Meta Tagi