Electronic Noses for Indoor Air Quality Assessment - Publikacja - MOST Wiedzy

Wyszukiwarka

Electronic Noses for Indoor Air Quality Assessment

Abstrakt

This chapter presents a proposal of the use of electronic noses in the monitoring of indoor air quality. The main focus is put on the detailed characteristics of today’s indoor air quality control methods, the types of pollution in the air, and the development of electronic noses for air testing. Currently, scientists seek methodological and structural solutions that would enable real-time online indoor air control. It has been shown that using electronic noses in this situation is advantageous. In addition, potential uses of these devices are discussed, with particular focus on closed food processing spaces. The authors of the chapter argue that in the near future, the proposed solution could improve the quality of indoor air and thus the health of the users of the indoor environments, as well as the quality of the products prepared there.

Cytowania

  • 1

    CrossRef

  • 0

    Web of Science

  • 0

    Scopus

Cytuj jako

Pełna treść

pobierz publikację
pobrano 54 razy

Licencja

Copyright (IGI Global 2018)

Informacje szczegółowe

Kategoria:
Publikacja monograficzna
Typ:
rozdział, artykuł w książce - dziele zbiorowym /podręczniku w języku o zasięgu międzynarodowym
Tytuł wydania:
Electronic Nose Technologies and Advances in Machine Olfaction strony 202 - 223
ISSN:
2327-039X
Język:
angielski
Rok wydania:
2018
Opis bibliograficzny:
Majchrzak T., Wojnowski W., Dymerski T., Gębicki J., Namieśnik J.: Electronic Noses for Indoor Air Quality Assessment// Electronic Nose Technologies and Advances in Machine Olfaction/ ed. Y. Albastaki, F. Albalooshi Bahrajn: IGI Global, 2018, s.202-223
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.4018/978-1-5225-3862-2
Bibliografia: test
  1. Alexandrakis, D., Brunton, N. P., Downey, G., & Scannell, A. G. M. (2012). Identification of Spoilage Marker Metabolites in Irish Chicken Breast Muscle Using HPLC, GC-MS Coupled with SPME and Traditional Chemical Techniques. Food and Bioprocess Technology, 5(5), 1917-1923. doi:10.1007/ s11947-010-0500-8 otwiera się w nowej karcie
  2. Andretta, M., Coppola, F., & Seccia, L. (2016). Investigation on the interaction between the outdoor environment and the indoor microclimate of a historical library. Journal of Cultural Heritage, 17, 75-86. doi:10.1016/j.culher.2015.07.002 otwiera się w nowej karcie
  3. Bender, F., Barié, N., Romoudis, G., Voigt, A., & Rapp, M. (2003). Development of a preconcentration unit for a SAW sensor micro array and its use for indoor air quality monitoring. Sensors and Actuators. B, Chemical, 93(1-3), 135-141. doi:10.1016/S0925-4005(03)00239-9 otwiera się w nowej karcie
  4. Electronic Noses for Indoor Air Quality Assessment otwiera się w nowej karcie
  5. Chao, C. Y., & Chan, G. Y. (2001). Quantification of indoor VOCs in twenty mechanically ventilated build- ings in Hong Kong. Atmospheric Environment, 35(34), 5895-5913. doi:10.1016/S1352-2310(01)00410-1 otwiera się w nowej karcie
  6. Dascalaki, E. G., Lagoudi, A., Balaras, C. A., & Gaglia, A. G. (2008). Air quality in hospital operating rooms. Building and Environment, 43(11), 1945-1952. doi:10.1016/j.buildenv.2007.11.015 otwiera się w nowej karcie
  7. Gram, L., Ravn, L., Rasch, M., Bruhn, J. B., Christensen, A. B., & Givskov, M. (2002). Food spoil- age-interactions between food spoilage bacteria. International Journal of Food Microbiology, 78(1-2), 79-97. doi:10.1016/S0168-1605(02)00233-7 PMID:12222639 otwiera się w nowej karcie
  8. Herrick, R. F., Stewart, J. H., & Allen, J. G. (2016). Review of PCBs in US schools: A brief history, an estimate of the number of impacted schools, and an approach for evaluating indoor air samples. Environmental Science and Pollution Research International, 23(3), 1975-1985. doi:10.1007/s11356- 015-4574-8 PMID:25940477 otwiera się w nowej karcie
  9. Krupińska, B., Van Grieken, R., & De Wael, K. (2013). Air quality monitoring in a museum for preven- tive conservation: Results of a three-year study in the Plantin-Moretus Museum in Antwerp, Belgium. Microchemical Journal, 110, 350-360. doi:10.1016/j.microc.2013.05.006 otwiera się w nowej karcie
  10. Kuske, M., Romain, A.-C., & Nicolas, J. (2005). Microbial volatile organic compounds as indicators of fungi. Can an electronic nose detect fungi in indoor environments? Building and Environment, 40(6), 824-831. doi:10.1016/j.buildenv.2004.08.012 otwiera się w nowej karcie
  11. Lewkowska, P., Dymerski, T., Gębicki, J., & Namieśnik, J. (2016). The Use of Sensory Analysis Tech- niques to Assess the Quality of Indoor Air. Critical Reviews in Analytical Chemistry, 47(1), 37-50. do i:10.1080/10408347.2016.1176888 PMID:27105173 otwiera się w nowej karcie
  12. Lv, P., Tang, Z., Wei, G., Yu, J., & Huang, Z. (2007). Recognizing indoor formaldehyde in binary gas mixtures with a micro gas sensor array and a neural network. Measurement Science & Technology, 18(9), 2997-3004. doi:10.1088/0957-0233/18/9/034 otwiera się w nowej karcie
  13. Marć, M., Śmiełowska, M., & Zabiegała, B. (2016). Concentrations of monoaromatic hydrocarbons in the air of the underground car park and individual garages attached to residential buildings. Science of the Total Environment Journal, 573, 767-777. doi:10.1016/j.scitotenv.2016.08.173 PMID:27591527 otwiera się w nowej karcie
  14. Mendes, A., Bonassi, S., Aguiar, L., Pereira, C., Neves, P., Silva, S., ... Teixeira, J. P. (2015). Indoor air quality and thermal comfort in elderly care centers. Urban Climate, 14, 486-501. doi:10.1016/j. uclim.2014.07.005 otwiera się w nowej karcie
  15. Mildner-Szkudlarz, S., Jeleń, H. H., & Zawirska-Wojtasiak, R. (2008). The use of electronic and hu- man nose for monitoring rapeseed oil autoxidation. European Journal of Lipid Science and Technology, 110(1), 61-72. doi:10.1002/ejlt.200700009 otwiera się w nowej karcie
  16. Morvan, M., Talou, T., & Beziau, J.-F. (2003). MOS-MOSFET gas sensors array measurements versus sensory and chemical characterisation of VOC's emissions from car seat foams. Sensors and Actuators. B, Chemical, 95(1-3), 212-223. doi:10.1016/S0925-4005(03)00425-8 otwiera się w nowej karcie
  17. Electronic Noses for Indoor Air Quality Assessment otwiera się w nowej karcie
  18. Nicolas, J., Romain, A.-C., & Ledent, C. (2006). The electronic nose as a warning device of the odour emergence in a compost hall. Sensors and Actuators. B, Chemical, 116(1-2), 95-99. doi:10.1016/j. snb.2005.11.085 otwiera się w nowej karcie
  19. Ramalho, O. (2000). Correspondences between olfactometry, analytical and electronic nose data for 10 indoor paints. Analusis, 28(3), 207-215. doi:10.1051/analusis:2000280207 otwiera się w nowej karcie
  20. Roinestad, K. S., Louis, J. B., & Rosen, J. D. (1993). Determination of pesticides in indoor air and dust. Journal of AOAC International, 76(5), 1121-1126. PMID:8241815 otwiera się w nowej karcie
  21. Saad, S. M., Shakaff, A. Y. M., Saad, A. R. M., Yusof, A. M., Andrew, A. M., Zakaria, A., & Adom, A. H. (2017). Analysis of feature selection with Probabilistic Neural Network (PNN) to classify sources influencing indoor air quality. AIP Conference Proceedings, 1808. otwiera się w nowej karcie
  22. Schieweck, A., Lohrengel, B., Siwinski, N., Genning, C., & Salthammer, T. (2005). Organic and inor- ganic pollutants in storage rooms of the Lower Saxony State Museum Hanover, Germany. Atmospheric Environment, 39(33), 6098-6108. doi:10.1016/j.atmosenv.2005.06.047 otwiera się w nowej karcie
  23. Scorsone, E., Pisanelli, A. M., & Persaud, K. C. (2006). Development of an electronic nose for fire detection. Sensors and Actuators. B, Chemical, 116(1-2), 55-61. doi:10.1016/j.snb.2005.12.059 otwiera się w nowej karcie
  24. Senter, S. D., Arnold, J. W., & Chew, V. (2000). APC values and volatile compounds formed in com- mercially processed, raw chicken parts during storage at 4 and 13 C and under simulated temperature abuse conditions. Journal of the Science of Food and Agriculture, 80(10), 1559-1564. doi:10.1002/1097- 0010(200008)80:10<1559::AID-JSFA686>3.0.CO;2-8 otwiera się w nowej karcie
  25. Seyama, M., Sugimoto, I., & Miyagi, T. (2002). Application of an array sensor based on plasma-deposited organic film coated quartz crystal resonators to monitoring indoor volatile compounds. IEEE Sensors Journal, 2(5), 422-427. doi:10.1109/JSEN.2002.804576 otwiera się w nowej karcie
  26. Shen, N., Moizuddin, S., Wilson, L., Duvick, S. A., White, P. J., & Pollak, L. M. (2001). Relationship of electronic nose analyses and sensory evaluation of vegetable oils during storage. Journal of the American Oil Chemists' Society, 78(9), 937-940. doi:10.1007/s11746-001-0367-z otwiera się w nowej karcie
  27. Śliwińska, M., Wiśniewska, P., Dymerski, T., Wardencki, W., & Namieśnik, J. (2015). The flavour of fruit spirits and fruit liqueurs: A review. Flavour and Fragrance Journal, 30(3), 197-207. doi:10.1002/ffj.3237 otwiera się w nowej karcie
  28. Śmiełowska, M., Marć, M., & Zabiegała, B. (2017). Indoor air quality in public utility environments-a review. Environmental Science and Pollution Research International, 1-11. PMID:28236201 otwiera się w nowej karcie
  29. Szczurek, A., & Maciejewska, M. (2015). Classification of air quality inside car cabin using sensor system. Sensornets. otwiera się w nowej karcie
  30. Takeoka, G., Perrino, C., & Buttery, R. (1996). Volatile Constituents of Used Frying Oils. Journal of Agricultural and Food Chemistry, 44(3), 654-660. doi:10.1021/jf950430m otwiera się w nowej karcie
  31. Wongchoosuk, C., Khunarak, C., Lutz, M., & Kerdcharoen, T. (2012). WiFi electronic nose for indoor air monitoring. 9th International Conference on Electrical Engineering/Electronics, Computer, Telecom- munications and Information Technology, 1-4. doi:10.1109/ECTICon.2012.6254166 otwiera się w nowej karcie
  32. Worobiec, A., Samek, L., Spolnik, Z., Kontozova, V., Stefaniak, E., & Van Grieken, R. (2006). Study of the winter and summer changes of the air composition in the church of Szalowa, Poland, related to conservation. Mikrochimica Acta, 156(3-4), 253-261. doi:10.1007/s00604-006-0619-5 otwiera się w nowej karcie
  33. Xu, L., He, J., Duan, S., Wu, X., & Wang, Q. (2016). Comparison of machine learning algorithms for concentration detection and prediction of formaldehyde based on electronic nose. Sensor Review, 36(2), 207-216. doi:10.1108/SR-07-2015-0104 otwiera się w nowej karcie
  34. Xu, L., Yu, X., Liu, L., & Zhang, R. (2016). A novel method for qualitative analysis of edible oil oxi- dation using an electronic nose. Food Chemistry, 202, 229-235. doi:10.1016/j.foodchem.2016.01.144 PMID:26920289 otwiera się w nowej karcie
  35. Yao, D. (2009). A gas sensing system for indoor air quality control and polluted environmental monitor- ing. In 9th IEEE Conference on Nanotechnology 2009 (Vol. 8, pp. 806-811). IEEE.
  36. Zampolli, S., Elmi, I., Ahmed, F., Passini, M., Cardinali, G. C., Nicoletti, S., & Dori, L. (2004). An electronic nose based on solid state sensor arrays for low-cost indoor air quality monitoring applications. Sensors and Actuators. B, Chemical, 101(1), 39-46. doi:10.1016/j.snb.2004.02.024 otwiera się w nowej karcie
  37. Zeiger, E., Gollapudi, B., & Spencer, P. (2005). Genetic toxicity and carcinogenicity studies of glutaral- dehyde-a review. Mutation Research/Reviews in Mutation Research, 589(2), 136-151. doi:10.1016/j. mrrev.2005.01.001 PMID:15795166 otwiera się w nowej karcie
  38. Zhang, J., Chen, W., Li, J., Yu, S., & Zhao, W. (2015). VOCs and Particulate Pollution due to Incense Burning in Temples, China. Procedia Engineering, 121, 992-1000. doi:10.1016/j.proeng.2015.09.067 otwiera się w nowej karcie
Źródła finansowania:
  • Działalność statusowa
Weryfikacja:
Politechnika Gdańska

wyświetlono 72 razy

Publikacje, które mogą cię zainteresować

Meta Tagi