Influence of Optimization Algorithms and Computational Complexity on Concrete Compressive Strength Prediction Machine Learning Models for Concrete Mix Design - Publikacja - MOST Wiedzy

Wyszukiwarka

Influence of Optimization Algorithms and Computational Complexity on Concrete Compressive Strength Prediction Machine Learning Models for Concrete Mix Design

Abstrakt

The proper design of concrete mixtures is a critical task in concrete technology, where optimal strength, eco-friendliness, and production efficiency are increasingly demanded. While traditional analytical methods, such as the Three Equations Method, offer foundational approaches to mix design, they often fall short in handling the complexity of modern concrete technology. Machine learning-based models have demonstrated notable efficacy in predicting concrete compressive strength, addressing the limitations of conventional methods. This study builds on previous research by investigating not only the impact of computational complexity on the predictive performance of machine learning models but also the influence of different optimization algorithms. The study evaluates the effectiveness of three optimization techniques: the Quasi-Newton Method (QNM), the Adaptive Moment Estimation (ADAM) algorithm, and Stochastic Gradient Descent (SGD). A total of forty-five deep neural network models of varying computational complexity were trained and tested using a comprehensive database of concrete mix designs and their corresponding compressive strength test results. The findings reveal a significant interaction between optimization algorithms and model complexity in enhancing prediction accuracy. Models utilizing the QNM algorithm outperformed those using the ADAM and SGD in terms of error reduction (SSE, MSE, RMSE, NSE, and ME) and increased coefficient of determination (R2). These insights contribute to the development of more accurate and efficient AI-driven methods in concrete mix design, promoting the advancement of concrete technology and the potential for future research in this domain.

Cytowania

  • 0

    CrossRef

  • 0

    Web of Science

  • 0

    Scopus

Cytuj jako

Pełna treść

pełna treść publikacji nie jest dostępna w portalu

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuły w czasopismach
Opublikowano w:
Materials nr 18,
ISSN: 1996-1944
Język:
angielski
Rok wydania:
2025
Opis bibliograficzny:
Ziółkowski P.: Influence of Optimization Algorithms and Computational Complexity on Concrete Compressive Strength Prediction Machine Learning Models for Concrete Mix Design// Materials -,iss. 6 (2025), s.1386-
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.3390/ma18061386
Źródła finansowania:
  • Działalność statutowa/subwencja
Weryfikacja:
Politechnika Gdańska

wyświetlono 0 razy

Publikacje, które mogą cię zainteresować

Meta Tagi