Machine Learning Techniques in Concrete Mix Design - Publikacja - MOST Wiedzy

Wyszukiwarka

Machine Learning Techniques in Concrete Mix Design

Abstrakt

Concrete mix design is a complex and multistage process in which we try to find the best composition of ingredients to create good performing concrete. In contemporary literature, as well as in state-of-the-art corporate practice, there are some methods of concrete mix design, from which the most popular are methods derived from The Three Equation Method. One of the most important features of concrete is compressive strength, which determines the concrete class. Predictable compressive strength of concrete is essential for concrete structure utilisation and is the main feature of its safety and durability. Recently, machine learning is gaining significant attention and future predictions for this technology are even more promising. Data mining on large sets of data attracts attention since machine learning algorithms have achieved a level in which they can recognise patterns which are difficult to recognise by human cognitive skills. In our paper, we would like to utilise state-of-the-art achievements in machine learning techniques for concrete mix design. In our research, we prepared an extensive database of concrete recipes with the according destructive laboratory tests, which we used to feed the selected optimal architecture of an artificial neural network. We have translated the architecture of the artificial neural network into a mathematical equation that can be used in practical applications.

Cytowania

  • 1 0 4

    CrossRef

  • 0

    Web of Science

  • 1 1 2

    Scopus

Cytuj jako

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuł w czasopiśmie wyróżnionym w JCR
Opublikowano w:
Materials nr 12, strony 1256 - 1252,
ISSN: 1996-1944
Język:
angielski
Rok wydania:
2019
Opis bibliograficzny:
Ziółkowski P., Niedostatkiewicz M.: Machine Learning Techniques in Concrete Mix Design// Materials. -Vol. 12, iss. 8 (2019), s.1256-1252
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.3390/ma12081256
Weryfikacja:
Politechnika Gdańska

wyświetlono 273 razy

Publikacje, które mogą cię zainteresować

Meta Tagi