Insight into the microstructural and durability characteristics of 3D printed concrete: Cast versus printed specimens - Publikacja - MOST Wiedzy

Wyszukiwarka

Insight into the microstructural and durability characteristics of 3D printed concrete: Cast versus printed specimens

Abstrakt

This study presents the comparison of microstructural and durability characteristics of 3D printed concrete (3DPC) depending on its production method (printing or casting). Printed samples with different numbers of layers, as well as a cast specimen with an identical mix composition, were produced and compared, with their microstructural pore and solid characteristics quantitatively and qualitatively investigated. For this purpose, scanning electron microscopy (SEM), mercury intrusion porosimetry (MIP) and X-ray micro-computed tomography (micro-CT) were utilized to evaluate the microstructures of the 3DPC. In particular, quantitative approaches using micro-CT data were newly proposed for a better understanding of the microstructural characteristics of 3DPC. Moreover, their durability-related characteristics and transport properties, including freeze-thaw and thermal resistance, were examined and compared. Despite noticeable differences between the microstructures of the printed and cast specimens, including their anisotropic and inter-layer porosity and heterogeneity, confirmed by MIP, SEM and micro-CT, no significant differences in the transport (capillary water porosity and water sorptivity) or durability-related properties (frost and thermal attack) were found. This was due to the dense and homogenous microstructure of 3DPC, which is attributable to the high binder content and low w/b of the mixture. Moreover, the newly proposed evaluation provided reasonable quantitative and qualitative characteristics, which can be used to demonstrate and predict the material properties of 3DPC.

Cytowania

  • 6

    CrossRef

  • 0

    Web of Science

  • 1 8

    Scopus

Cytuj jako

Pełna treść

pobierz publikację
pobrano 8 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Creative Commons: CC-BY otwiera się w nowej karcie

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
Publikacja w czasopiśmie
Opublikowano w:
Case Studies in Construction Materials nr 17, wydanie e01320,
ISSN: 2214-5095
Rok wydania:
2022
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1016/j.cscm.2022.e01320
Bibliografia: test
  1. S.B. Balani, S.H. Ghaffar, M. Chougan, E. Pei, E. Ş ahin, Processes and materials used for direct writing technologies: a review, Results Eng. 11 (2021), 100257, https://doi.org/10.1016/j.rineng.2021.100257. otwiera się w nowej karcie
  2. J. Xiao, G. Ji, Y. Zhang, G. Ma, V. Mechtcherine, J. Pan, L. Wang, T. Ding, Z. Duan, S. Du, Large-scale 3D printing concrete technology: current status and future opportunities, Cem. Concr. Compos. 122 (2021), 104115, https://doi.org/10.1016/j.cemconcomp.2021.104115. otwiera się w nowej karcie
  3. S. El-Sayegh, L. Romdhane, S. Manjikian, A critical review of 3D printing in construction: benefits, challenges, and risks, Arch. Civ. Mech. Eng. 20 (2020), https://doi.org/10.1007/s43452-020-00038-w. otwiera się w nowej karcie
  4. P. Sikora, M. Chougan, K. Cuevas, M. Liebscher, V. Mechtcherine, S.H. Ghaffar, M. Liard, D. Lootens, P. Krivenko, M. Sanytsky, D. Stephan, The effects of nano- and micro-sized additives on 3D printable cementitious and alkali-activated composites: a review, Appl. Nanosci. (2021), https://doi.org/10.1007/s13204-021- 01738-2. otwiera się w nowej karcie
  5. C. Zhang, V.N. Nerella, A. Krishna, S. Wang, Y. Zhang, V. Mechtcherine, N. Banthia, Mix design concepts for 3D printable concrete: a review, Cem. Concr. Compos. 122 (2021), 104155, https://doi.org/10.1016/j.cemconcomp.2021.104155. otwiera się w nowej karcie
  6. S. Yu, M. Xia, J. Sanjayan, L. Yang, J. Xiao, H. Du, Microstructural characterization of 3D printed concrete, J. Build. Eng. 44 (2021), 102948, https://doi.org/ 10.1016/j.jobe.2021.102948. otwiera się w nowej karcie
  7. J. Kruger, A. Du Plessis, G. van Zijl, An investigation into the porosity of extrusion-based 3D printed concrete, Addit. Manuf. 37 (2021), 101740, https://doi.org/ 10.1016/j.addma.2020.101740. otwiera się w nowej karcie
  8. M. Moini, J. Olek, J.P. Youngblood, B. Magee, P.D. Zavattieri, Additive manufacturing and performance of architectured cement-based materials, Adv. Mater. 30 (2018), e1802123, https://doi.org/10.1002/adma.201802123. otwiera się w nowej karcie
  9. V.N. Nerella, S. Hempel, V. Mechtcherine, Effects of layer-interface properties on mechanical performance of concrete elements produced by extrusion-based 3D-printing, Constr. Build. Mater. 205 (2019) 586-601, https://doi.org/10.1016/j.conbuildmat.2019.01.235. otwiera się w nowej karcie
  10. Y.W.D. Tay, G.H.A. Ting, Y. Qian, B. Panda, L. He, M.J. Tan, Time gap effect on bond strength of 3D-printed concrete, Virtual Phys. Prototyp. 14 (2019) 104-113, https://doi.org/10.1080/17452759.2018.1500420. otwiera się w nowej karcie
  11. J. van der Putten, M. Deprez, V. Cnudde, G. de Schutter, K. van Tittelboom, Microstructural characterization of 3D printed cementitious materials, Materials 12 (2019), https://doi.org/10.3390/ma12182993. otwiera się w nowej karcie
  12. S. Skibicki, M. Pułtorak, M. Kaszyńska, M. Hoffmann, E. Ekiert, D. Sibera, The effect of using recycled PET aggregates on mechanical and durability properties of 3D printed mortar, Constr. Build. Mater. 335 (2022), 127443, https://doi.org/10.1016/j.conbuildmat.2022.127443. otwiera się w nowej karcie
  13. J. van der Putten, M. de Volder, P. van den Heede, G. de Schutter, K. van Tittelboom, 3D printing of concrete: the influence on chloride penetration, in: F.P. Bos, S.S. Lucas, R.J.M. Wolfs, T.A.M. Salet (eds.), Second RILEM International Conference on Concrete and Digital Fabrication, Springer International Publishing, Cham, 2020, pp. 500-7. otwiera się w nowej karcie
  14. C. Schröfl, V.N. Nerella, V. Mechtcherine, Capillary Water Intake by 3D-printed concrete visualised and quantified by neutron radiography, in: T. Wangler, R.J. Flatt (eds.), First RILEM International Conference on Concrete and Digital Fabrication -Digital Concrete 2018, Springer International Publishing, Cham, 2019, pp. 217-24. otwiera się w nowej karcie
  15. J. Strzałkowski, H. Garbalińska, Usefulness of mercury porosimetry to assess the porosity of cement composites with the addition of aerogel particles, in: I.B. Valente, A. Ventura Gouveia, S.S. Dias (eds.), Proceedings of the 3rd RILEM Spring Convention and Conference (RSCC 2020), Springer International Publishing, Cham, 2021, pp. 411-23. otwiera się w nowej karcie
  16. P. Sikora, T. Rucinska, D. Stephan, S.-Y. Chung, M. Abd Elrahman, Evaluating the effects of nanosilica on the material properties of lightweight and ultra- lightweight concrete using image-based approaches, Constr. Build. Mater. 264 (2020), 120241, https://doi.org/10.1016/j.conbuildmat.2020.120241. otwiera się w nowej karcie
  17. S.-Y. Chung, J.-S. Kim, P.H. Kamm, D. Stephan, T.-S. Han, M. Abd Elrahman, Pore and solid characterizations of interfacial transition zone of mortar using microcomputed tomography images, J. Mater. Civ. Eng. 33 (2021), 4021348, https://doi.org/10.1061/(ASCE)MT.1943-5533.0003986. otwiera się w nowej karcie
  18. M. Chougan, S.H. Ghaffar, P. Sikora, S.-Y. Chung, T. Rucinska, D. Stephan, A. Albar, M.R. Swash, Investigation of additive incorporation on rheological, microstructural and mechanical properties of 3D printable alkali-activated materials, Mater. Des. 202 (2021), 109574, https://doi.org/10.1016/j. matdes.2021.109574. otwiera się w nowej karcie
  19. P. Sikora, S.-Y. Chung, M. Liard, D. Lootens, T. Dorn, P.H. Kamm, D. Stephan, M. Abd Elrahman, The effects of nanosilica on the fresh and hardened properties of 3D printable mortars, Constr. Build. Mater. 281 (2021), 122574, https://doi.org/10.1016/j.conbuildmat.2021.122574. otwiera się w nowej karcie
  20. L. Kong, M. Ostadhassan, X. Hou, M. Mann, C. Li, Microstructure characteristics and fractal analysis of 3D-printed sandstone using micro-CT and SEM-EDS, J. Pet. Sci. Eng. 175 (2019) 1039-1048, https://doi.org/10.1016/j.petrol.2019.01.050. otwiera się w nowej karcie
  21. Y. Chen, S. Chaves Figueiredo, Z. Li, Z. Chang, K. Jansen, O. Çopuroglu, E. Schlangen, Improving printability of limestone-calcined clay-based cementitious materials by using viscosity-modifying admixture, Cem. Concr. Res. 132 (2020), 106040, https://doi.org/10.1016/j.cemconres.2020.106040. otwiera się w nowej karcie
  22. J. Xiao, N. Han, L. Zhang, S. Zou, Mechanical and microstructural evolution of 3D printed concrete with polyethylene fiber and recycled sand at elevated temperatures, Constr. Build. Mater. 293 (2021), 123524, https://doi.org/10.1016/j.conbuildmat.2021.123524. otwiera się w nowej karcie
  23. A.R. Arunothayan, B. Nematollahi, R. Ranade, S.H. Bong, J.G. Sanjayan, K.H. Khayat, Fiber orientation effects on ultra-high performance concrete formed by 3D printing, Cem. Concr. Res. 143 (2021), 106384, https://doi.org/10.1016/j.cemconres.2021.106384. otwiera się w nowej karcie
  24. G. Bai, L. Wang, G. Ma, J. Sanjayan, M. Bai, 3D printing eco-friendly concrete containing under-utilised and waste solids as aggregates, Cem. Concr. Compos. 120 (2021), 104037, https://doi.org/10.1016/j.cemconcomp.2021.104037. otwiera się w nowej karcie
  25. Y. Chen, O. Çopuroglu, C. Romero Rodriguez, F.F. de Mendonca Filho, E. Schlangen, Characterization of air-void systems in 3D printed cementitious materials using optical image scanning and X-ray computed tomography, Mater. Charact. 173 (2021), 110948, https://doi.org/10.1016/j.matchar.2021.110948. otwiera się w nowej karcie
  26. K. Federowicz, M. Kaszyńska, A. Zieliński, M. Hoffmann, Effect of curing methods on shrinkage development in 3D-printed concrete, Materials 13 (2020), https://doi.org/10.3390/ma13112590. otwiera się w nowej karcie
  27. EN 1015-3 -Methods of test for mortar for masonry -Part 3: Determination of consistence of fresh mortar. otwiera się w nowej karcie
  28. Y.W.D. Tay, Y. Qian, M.J. Tan, Printability region for 3D concrete printing using slump and slump flow test, Compos. Part B: Eng. 174 (2019), 106968, https:// doi.org/10.1016/j.compositesb.2019.106968. otwiera się w nowej karcie
  29. M. Kaszyńska, S. Skibicki, M. Hoffmann, 3D concrete printing for sustainable construction, Energies 13 (2020) 6351, https://doi.org/10.3390/en13236351. otwiera się w nowej karcie
  30. K. Cuevas, M. Chougan, F. Martin, S.H. Ghaffar, D. Stephan, P. Sikora, 3D printable lightweight cementitious composites with incorporated waste glass aggregates and expanded microspheres -rheological, thermal and mechanical properties, J. Build. Eng. 44 (2021), 102718, https://doi.org/10.1016/j. jobe.2021.102718. otwiera się w nowej karcie
  31. M. Hoffmann, S. Skibicki, P. Pankratow, A. Zieliński, M. Pajor, M. Techman, Automation in the construction of a 3D-printed concrete wall with the use of a lintel gripper, Materials 13 (2020), https://doi.org/10.3390/ma13081800. otwiera się w nowej karcie
  32. EN 196-1 -Methods of testing cement -Part 1: Determination of strength. otwiera się w nowej karcie
  33. EN 12390-7 -Testing hardened concrete -Part 7: Density of hardened concrete. otwiera się w nowej karcie
  34. ISO 15148 -Hygrothermal performance of building materials and products -Determination of water absorption coefficient by partial immersion. otwiera się w nowej karcie
  35. ASTM C666 -Standard Test Method for Resistance of Concrete to Rapid Freezing and Thawing. otwiera się w nowej karcie
  36. N. Bossa, P. Chaurand, J. Vicente, D. Borschneck, C. Levard, O. Aguerre-Chariol, J. Rose, Micro-and nano-X-ray computed-tomography: a step forward in the characterization of the pore network of a leached cement paste, Cem. Concr. Res. 67 (2015) 138-147, https://doi.org/10.1016/j.cemconres.2014.08.007. otwiera się w nowej karcie
  37. S.-Y. Chung, J.-S. Kim, D. Stephan, T.-S. Han, Overview of the use of micro-computed tomography (micro-CT) to investigate the relation between the material characteristics and properties of cement-based materials, Constr. Build. Mater. 229 (2019), 116843, https://doi.org/10.1016/j.conbuildmat.2019.116843. otwiera się w nowej karcie
  38. S.-Y. Chung, M.A. Elrahman, D. Stephan, P.H. Kamm, Investigation of characteristics and responses of insulating cement paste specimens with Aer solids using X-ray micro-computed tomography, Constr. Build. Mater. 118 (2016) 204-215, https://doi.org/10.1016/j.conbuildmat.2016.04.159. otwiera się w nowej karcie
  39. S.-Y. Chung, P. Sikora, D. Stephan, M. Abd Elrahman, The effect of lightweight concrete cores on the thermal performance of vacuum insulation panels, Materials 13 (2020), https://doi.org/10.3390/ma13112632. otwiera się w nowej karcie
  40. E. Gallucci, K. Scrivener, A. Groso, M. Stampanoni, G. Margaritondo, 3D experimental investigation of the microstructure of cement pastes using synchrotron X- ray microtomography (μCT, Cem. Concr. Res. 37 (2007) 360-368, https://doi.org/10.1016/j.cemconres.2006.10.012. otwiera się w nowej karcie
  41. Y. Yang, Y. Zhang, W. She, Z. Wu, Z. Liu, Y. Ding, Nondestructive monitoring the deterioration process of cement paste exposed to sodium sulfate solution by X- ray computed tomography, Constr. Build. Mater. 186 (2018) 182-190, https://doi.org/10.1016/j.conbuildmat.2018.07.145. otwiera się w nowej karcie
  42. H. Lee, J.-H.J. Kim, J.-H. Moon, W.-W. Kim, E.-A. Seo, Evaluation of the mechanical properties of a 3D-printed mortar, Materials 12 (2019), https://doi.org/ 10.3390/ma12244104. otwiera się w nowej karcie
  43. C. Joh, J. Lee, T.Q. Bui, J. Park, I.-H. Yang, Buildability and mechanical properties of 3D printed concrete, Materials 13 (2020), https://doi.org/10.3390/ ma13214919. otwiera się w nowej karcie
  44. A. Zhang, W. Yang, Y. Ge, P. Liu, Effect of nanomaterials on the mechanical properties and microstructure of cement mortar under low air pressure curing, Constr. Build. Mater. 249 (2020), 118787, https://doi.org/10.1016/j.conbuildmat.2020.118787. otwiera się w nowej karcie
  45. D. Ye, D. Zollinger, S. Choi, M. Won, Literature Review of Curing in Portland Cement Concrete Pavement, Technical Report -FHWA/TX06/0-5106-1 -Center for Transportation Research, The University of Texas at Austin, USA, 2006.
  46. H. Yang, W. Li, Y. Che, 3D printing cementitious materials containing nano-CaCO3: workability, strength, and microstructure, Front. Mater. 7 (2020) 260, https://doi.org/10.3389/fmats.2020.00260. otwiera się w nowej karcie
  47. J.J. Assaad, F. Hamzeh, B. Hamad, Qualitative assessment of interfacial bonding in 3D printing concrete exposed to frost attack, Case Stud. Constr. Mater. 13 (2020), e00357, https://doi.org/10.1016/j.cscm.2020.e00357. otwiera się w nowej karcie
  48. A.M. Neville, J.J. Brooks. Concrete Technology, 2nd edition, Pearson, UK, 2010. otwiera się w nowej karcie
  49. P. Sikora, M. Abd Elrahman, D. Stephan, The influence of nanomaterials on the thermal resistance of cement-based composites-a review, Nanomaterials 8 (2018), https://doi.org/10.3390/nano8070465. otwiera się w nowej karcie
  50. ASME , Boiler and Pressure Vessel Code Section III -Rules for Construction of Nuclear Facility Components Division 2 -Code for Concrete Containments, American Society of Mechanical Engineers, 2007. otwiera się w nowej karcie
  51. F. Lo Monte, R. Felicetti, C. Rossino, Fire spalling sensitivity of high-performance concrete in heated slabs under biaxial compressive loading, Mater. Struct. 52 (2019), https://doi.org/10.1617/s11527-019-1318-0. otwiera się w nowej karcie
  52. A. Cicione, J. Kruger, R.S. Walls, G. van Zijl, An experimental study of the behavior of 3D printed concrete at elevated temperatures, Fire Saf. J. 120 (2021), 103075, https://doi.org/10.1016/j.firesaf.2020.103075. otwiera się w nowej karcie
  53. P.K. Mehta, P.J.M. Monteiro. Concrete: Microstructure, Properties, and Materials, McGraw-Hill, New York, USA, 2006. otwiera się w nowej karcie
  54. B. Baz, G. Aouad, J. Kleib, D. Bulteel, S. Remond, Durability assessment and microstructural analysis of 3D printed concrete exposed to sulfuric acid environments, Constr. Build. Mater. 290 (2021), 123220, https://doi.org/10.1016/j.conbuildmat.2021.123220. otwiera się w nowej karcie
  55. Torquato Lu, Lineal-path function for random heterogeneous materials, Phys. Rev. A 45 (1992) 922-929, https://doi.org/10.1103/PhysRevA.45.922. otwiera się w nowej karcie
  56. S.-Y. Chung, M. Abd Elrahman, D. Stephan, The effects of anisotropic insulations with different spatial distributions on material properties of mortar specimens, Int. J. Concr. Struct. Mater. 11 (2017) 573-584, https://doi.org/10.1007/s40069-017-0218-3. otwiera się w nowej karcie
  57. S.-Y. Chung, D. Stephan, M.A. Elrahman, T.-S. Han, Effects of anisotropic voids on thermal properties of insulating media investigated using 3D printed samples, Constr. Build. Mater. 111 (2016) 529-542, https://doi.org/10.1016/j.conbuildmat.2016.02.165. otwiera się w nowej karcie
  58. J.W. Bullard, E.J. Garboczi, Defining shape measures for 3D star-shaped particles: sphericity, roundness, and dimensions, Powder Technol. 249 (2013) 241-252, https://doi.org/10.1016/j.powtec.2013.08.015. otwiera się w nowej karcie
Źródła finansowania:
Weryfikacja:
Brak weryfikacji

wyświetlono 15 razy

Publikacje, które mogą cię zainteresować

Meta Tagi