Interaction of human serum albumin with volatiles and polyphenols from some berries - Publikacja - MOST Wiedzy

Wyszukiwarka

Interaction of human serum albumin with volatiles and polyphenols from some berries

Abstrakt

Headspace solid-phase microextraction coupled with comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry (HS-SPME/GC GCeTOFMS) identified 19 and quantified 6 monoterpenes in gooseberries, blueberries and cranberries. As a protein model human serum albumin (HSA) was used in interaction with terpenes. Specific binding of terpenes to HSA under the physiological conditions was a result of the formation of a complex. In order to determine the synergism of polyphenols and volatiles in some berries binding properties with HSA were evaluated by 3D-fluorometry and molecular docking. Extracts of polyphenols and monoterpenes, using various ethanol mixtures with water, and their antioxidant properties were determined by two radical scavenging assays (ABTS and CUPRAC). The studied extracts interacted with HSA with different binding affinities which were directly related to their antioxidant properties. The highest binding abilities were in blueberries and g-terpinene. Among the six terpenes, the highest scoring compound was identified as g-terpinene. This study provides useful information for the future designing of health food on the basic of polyphenols and volatile substances.

Cytowania

  • 1 8

    CrossRef

  • 0

    Web of Science

  • 2 0

    Scopus

Autorzy (6)

Cytuj jako

Pełna treść

pobierz publikację
pobrano 135 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Creative Commons: CC-BY-NC-ND otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuł w czasopiśmie wyróżnionym w JCR
Opublikowano w:
FOOD HYDROCOLLOIDS nr 72, strony 297 - 303,
ISSN: 0268-005X
Język:
angielski
Rok wydania:
2017
Opis bibliograficzny:
Beema R., Dymerski T., Namieśnik J., Jastrzębski Z., Vearasilp S., Gorinstein S.: Interaction of human serum albumin with volatiles and polyphenols from some berries// FOOD HYDROCOLLOIDS. -Vol. 72, (2017), s.297-303
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1016/j.foodhyd.2017.06.005
Bibliografia: test
  1. ± SD of 5 measurements; Means within a column with the different superscripts or without superscripts are statistically different (p < 0.05; Student's t-test). otwiera się w nowej karcie
  2. Abbreviations: Polyph, polyphenols; GAE, gallic acid equivalent; otwiera się w nowej karcie
  3. ABTS, 2, 2 0 -Azino -bis (3-ethyl-benzothiazoline-6-sulfonic acid) diammonium salt; FRAP, Ferric-reducing/ antioxidant power; otwiera się w nowej karcie
  4. CUPRAC, Cupric reducing antioxidant capacity; otwiera się w nowej karcie
  5. TE, trolox equivalent;
  6. FI, fluorescence intensity;
  7. A.U., arbitral units; HSA, human serum albumin; FI of HSAþ100% EtOH according to peak a is equal to 705.76 ± 19.2, peak b is equal to 805.34 ± 12.5. FI of HSAþ50% EtOH according to peak a is equal to 753.98 ± 11.5, peak b is
  8. Al-Hanish, A., Stanic-Vucinic, D., Mihailovic, J., Prodic, I., Minic, S., Stojadinovic, M., et al. (2016). Noncovalent interactions of bovine a-lactalbumin with green tea polyphenol, epigalocatechin-3-gallate. Food Hydrocolloids, 61, 241e250. otwiera się w nowej karcie
  9. Apak, R., Guclu, K., Ozyurek, M., & Karademir, S. E. (2004). Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. Journal of Agricultural and Food Chemistry, 52, 7970e7981. otwiera się w nowej karcie
  10. Aprea, E., Biasioli, F., & Gasperi, F. (2015). Volatile compounds of raspberry fruit: From analytical methods to biological role and sensory impact. Molecules, 20, 2445e2474. otwiera się w nowej karcie
  11. Babine, R. E., & Bender, S. L. (1997). Molecular recognition of protein minus sign ligand complexes: Applications to drug design. Chemical Review, 97, 1359e1472. otwiera się w nowej karcie
  12. Cheng, Z. (2012). Comparative studies on the interactions of honokiol and magnolol with human serum albumin. Journal of Pharmaceutical and Biomedical Analysis, 66, 240e251. otwiera się w nowej karcie
  13. Chmiel, T., Kupska, M., Wardencki, W., & Namie snik, J. (2017). Application of response surface methodology to optimize solid-phase microextraction pro- cedure for chromatographic determination of aroma-active monoterpenes in berries. Food Chemistry, 221, 1041e1056. Do, Q. D., Angkawijaya, A. E., Tran-Nguyen, P. L., Huynh, L. H., Soetaredjo, F. E., Ismadji, S., et al. (2014). Effect of extraction solvent on total phenol content, total flavonoid content, and antioxidant activity of Limnophila aromatica. Journal of Food and Drug Analysis, 22, 296e302.
  14. Dymerski, T., Namie snik, J., Leontowicz, H., Leontowicz, M., Vearasilp, K., Martinez- Ayala, A. L., et al. (2016). Chemistry and biological properties of berry volatiles by two-dimensional chromatography, fluorescence and Fourier transform infrared spectroscopy techniques. Food Research International, 83, 74e86. otwiera się w nowej karcie
  15. Dymerski, T., Namie snik, J., Vearasilp, K., Arancibia-Avila, P., Toledo, F., Weisz, M., et al. (2015). Comprehensive two-dimensional gas chromatography and three- dimensional fluorometry for detection of volatile and bioactive substances in some berries. Talanta, 134, 460e467. otwiera się w nowej karcie
  16. Gallucci, M. N., Oliva, M., Casero, C., Dambolena, J., Luna, A., Zygadlo, J., et al. (2009). otwiera się w nowej karcie
  17. Antimicrobial combined action of terpenes against the food-borne microor- ganisms Escherichia coli, Staphylococcus aureus and Bacillus cereus. Flavour and Fragrance Journal, 24, 348e354. He, Y., Wang, Y., Tang, L., Liu, H., Chen, W., Zheng, Z., et al. (2008). Binding of puerarin to human serum albumin: A spectroscopic analysis and molecular docking. Journal of Fluorescence, 18, 433e442. H€ oferl, M., Stoilova, I., Schmidt, E., Wanner, J., Jirovetz, L., Trifonova, D., et al. (2014). Chemical composition and antioxidant properties of Juniper berry (Juniperus communis L.) essential oil. Action of the essential oil on the antioxidant pro- tection of Saccharomyces cerevisiae model organism. Antioxidants, 3, 81e98.
  18. Juliani, H. R., Koroch, A. R., & Simon, J. E. (2009). Chemical diversity of essential oils of Ocimum species and their associated antioxidant and antimicrobial l activity. In F. Chemat, V. K. Varshney, & K. Allaf (Eds.), Essential oils and aromas: Green extractions and applications. Dehradun, India: Har Krishan Bhalla & Sons. otwiera się w nowej karcie
  19. Ku, Y. G., Bae, J. H., Martinez-Ayala, A. L., Vearasilp, S., Namie snik, J., Pasko, P., et al. (2017). Efficient three-dimensional fluorescence measurements for character- ization of binding properties in some plants. Sensors and Actuators B, 248, 777e784. Lelis, C. A., Ferreira, G. M. D., Ferreira, G. M. D., Hespanhol, M. C., Pinto, M. S., da Silva, L. H. M., et al. (2017). Determination of driving forces for bovine serum albumin-Ponceau 4R binding using surface plasmon resonance and fluores- cence spectroscopy: A comparative study. Food Hydrocolloids, 70, 29e35.
  20. Li, H., Wu, F., Tan, J., Wang, K., Zhang, C., Zheng, H., et al. (2016). Caffeic acid phe- nethyl ester exhibiting distinctive binding interaction with human serum al- bumin implies the pharmacokinetic basis of propolis bioactive components. Journal of Pharmaceutical and Biomedical Analysis, 122, 21e28. otwiera się w nowej karcie
  21. Medini, H., Elaissi, A., Larbi Khouja, M., Piras, A., Porcedda, S., Falconieri, D., et al. (2011). Chemical composition and antioxidant activity of the essential oil of Juniperus phoenicea L. berries. Natural Product Research, 25, 1695e1706. otwiera się w nowej karcie
  22. Peng, X., Wang, X., Qi, W., Su, R., & He, Z. (2016). Affinity of rosmarinic acid to human serum albumin and its effect on protein conformation stability. Food Chemistry, 192, 178e187. Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology & Medicine, 26, 1231e1237.
  23. Scrutton, N. S., & Raine, A. R. (1996). Cation-pi bonding and amino-aromatic in- teractions in the biomolecular recognition of substituted ammonium ligands. Biochemistry Journal, 319(Pt 1), 1e8. otwiera się w nowej karcie
  24. Shafreen, R. B., & Pandian, S. K. (2013). Molecular modeling and simulation of FabG, an enzyme involved in the fatty acid pathway of Streptococcus pyogenes. Mo- lecular Graphics and Modelling, 45, 1e12. otwiera się w nowej karcie
  25. Shahsavani, M. B., Ahmadi, S., Aseman, M. D., Nabavizadeh, S. M., Alavianmehr, M. M., & Yousefi, R. (2016). Comparative study on the interaction of two binuclear Pt (II) complexes with human serum albumin: Spectroscopic and docking simulation assessments. Journal of Photochemistry and Photobiology B, 164, 323e334. otwiera się w nowej karcie
  26. Shen, F., Niu, F., Li, J., Su, Y., Liu, Y., & Yang, Y. (2014). Interactions between tea polyphenol and two kinds of typical egg white proteinsdovalbumin and lysozyme: Effect on the gastrointestinal digestion of both proteins in vitro. Food Research International, 59, 100e107. otwiera się w nowej karcie
  27. Shpigelman, A., Shoham, Y., Israeli-Lev, G., & Livney, Y. D. (2014). b-Lactoglobuline naringenin complexes: Nano-vehicles for the delivery of a hydrophobic nu- traceutical. Food Hydrocolloids, 40, 214e224. otwiera się w nowej karcie
  28. Singleton, V. L., Orthofer, R., & Lamuela-Raventos, R. M. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin- Ciocalteu reagent. Methods of Enzymology, 299, 152e178. otwiera się w nowej karcie
  29. Swain, S. S., Paidesetty, S. K., & Padhy, R. N. (2017). Development of antibacterial conjugates using sulfamethoxazole with monocyclic terpenes: A systematic medicinal chemistry based computational approach. Computer Methods and Programs in Biomedicine (Ireland), 140, 185e194. otwiera się w nowej karcie
  30. Thongkaew, C., Gibis, M., Hinrichs, J., & Weiss, J. (2014). Polyphenol interactions with whey protein isolate and whey protein isolate epectin coacervates. Food Hydrocolloids, 4, 103e112. Topçu, G., G€ oren, A. C., Bilsel, G., Bilsel, M., Çakmak, O., Schilling, J., et al. (2005). Cytotoxic activity and essential oil composition of leaves and berries of Juni- perus excelsa. Journal of Pharmaceutical Biology, 43, 125e128. otwiera się w nowej karcie
  31. Wang, K., & Arntfield, S. D. (2016). Modification of interactions between selected volatile flavor compounds and salt-extracted pea protein isolates using chem- ical and enzymatic approaches. Food Hydrocolloids, 61, 567e577. otwiera się w nowej karcie
  32. Yan, J., Wu, D., Sun, P., Ma, X., Wang, L., Li, S., et al. (2016). Binding mechanism of the tyrosine-kinase inhibitor nilotinib to human serum albumin determined by1H STD NMR, 19F NMR, and molecular modeling. Journal of Pharmaceutical and Biomedical Analysis, 124, 1e9. Zengin, H., & Baysal, A. H. (2014). Antibacterial and antioxidant activity of essential oil terpenes against pathogenic and spoilage-forming bacteria and cell structure-activity relationships evaluated by SEM microscopy. Molecules, 19, 17773e17798.
Weryfikacja:
Politechnika Gdańska

wyświetlono 136 razy

Publikacje, które mogą cię zainteresować

Meta Tagi