Mechanical properties of two-stage concrete modified by silica fume - Publikacja - MOST Wiedzy

Wyszukiwarka

Mechanical properties of two-stage concrete modified by silica fume

Abstrakt

Abstract. Two-stage concretes, despite the fact that they have proven themselves in various types of construction, have not been studied to the same extent as traditional heavy concretes. Therefore, the article developed the composition of frame concrete with various additives in the composition of the cement-sand mortar. A comparison of the mechanical characteristics of the developed compositions with the addition of silica fume (SF) and superplasticizer (SP) in various combinations. In addition, test specimens were prepared with combinations of water/cement ratios of 0.45, 0.55, and 0.85, and cement/sand ratios of 0.5, 1, and 1.5. A total of 36 mixtures were prepared, silica fume was introduced as a partial replacement of cement in the amount of 6 wt.%. And a superplasticizer equal to 1.2 % of the cement content was added to the water. Compressive strength tests on two-stage concrete cylinders were carried out in accordance with ASTM-C873 and ASTM-C943. Tensile strength was also tested on 3 samples of each composition in accordance with the procedure described in ASTM-C496/C496M. As a result, the development of the strength of two-stage concrete for 7, 28 and 120 days was studied. It was found that the overall compressive strength of the twostage concrete based on SF, SP and SF + SP was higher than in concrete without any additives. At the same time, the modified concrete has higher strength properties, because it provides better contact due to expansion, as well as by reducing the water-cement ratio in grout. The results obtained allow to design a cement-sand mortar capable of filling all the voids between the coarse aggregate, thereby creating a dense structure of two-stage concrete.

Cytowania

  • 0

    CrossRef

  • 0

    Web of Science

  • 2 7

    Scopus

Cytuj jako

Pełna treść

pobierz publikację
pobrano 220 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Creative Commons: CC-BY otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuły w czasopismach
Opublikowano w:
Magazine of Civil Engineering [ Инженерно-строительный журнал (Inzhenerno-stroitelnyy zhurnal) ] nr 89, strony 26 - 38,
ISSN: 2071-4726
Język:
angielski
Rok wydania:
2019
Opis bibliograficzny:
Abdelgader H., Fediuk R., Kurpińska M., Elkhatib J., Murali G., Baranov A., Timokhin R.: Mechanical properties of two-stage concrete modified by silica fume// Magazine of Civil Engineering [ Инженерно-строительный журнал (Inzhenerno-stroitelnyy zhurnal) ] -Vol. 89,iss. 5 (2019), s.26-38
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.18720/mce.89.3
Bibliografia: test
  1. Abdelgader, H.S. How to design concrete produced by a two-stage concreting method. Cement and Concrete Research. 1999. 29(3). Pp. 331-337. DOI 10.1016/S0008-8846(98)00215-4 otwiera się w nowej karcie
  2. Fediuk, R.S., Yevdokimova, Y.G., Smoliakov, A.K., Stoyushko, N.Y., Lesovik, V.S. Use of geonics scientific positions for designing of building composites for protective (fortification) structures. IOP Conference Series: Materials Science and Engineering. 2017. No. 221. Pp. 012011. otwiera się w nowej karcie
  3. O'Malley, J., Abdelgader, H.S. Investigation into viability of using two stage (preplaced aggregate) concrete in an Irish setting. Front. Archit. Civ. Eng. China. 2010. 4(1). Pp. 127-132. otwiera się w nowej karcie
  4. Fediuk, R., Timokhin, R., Mochalov, A., Otsokov, K., Lashina, I. Performance properties of high-density impermeable cementitious paste. Journal of Materials in Civil Engineering. 2019. 31(4). otwiera się w nowej karcie
  5. Abdelgader, H.S., Najjar, M.F. Advances in concreting methods, Proceed. 1st Int. Conf. Sust. Built. Env. Infrastruct. Devel. Countr., Oran, Algeria. 2009. Pp. 315-324.
  6. Abirami, T., Loganaganandan, M., Gunasekaran, M., Fediuk, R., Vickhram Sreekrishna, R., Vignesh, T., Kothandapani, K. T. Experimental research on impact response of novel steel fibrous concretes under falling mass impact. Construction and Building Material. 2019. No. 222. Pp. 447-457. otwiera się w nowej karcie
  7. Loganina, V., Skachkov, Yu.P., Ryzhov, A.D. Additive based on aluminosilicates for lime dry mortar mixes. IOP Conference Series: Mater. Sci. Eng. 2018. 441. 012028. otwiera się w nowej karcie
  8. Svintsov, A.P., Nikolenko, Yu.V., Kharun, M.I., Kazakov, A.S. Effect of viscosity of petroleum products on deformation properties of concrete. Magazine of Civil Engineering. 2014. 51(7). Pp. 16-22. (rus). DOI: 10.5862/MCE.51.2. otwiera się w nowej karcie
  9. Abdelgader, H.S., Elgalhud, A.A. Effect of grout proportions on strength of two-stage concrete. Struct. Concr. 2008. 9(3). Pp. 163-170. otwiera się w nowej karcie
  10. Najjar, M.F., Ahmed, M.S., Mancef, L.N. Critical overview of two-stage concrete: properties and applications. Construction and Building Materials. 2014. No. 62. Pp. 47-58. DOI 10.1016/j.conbuildmat.2014.03.021 otwiera się w nowej karcie
  11. Volodchenko, A.A., Lesovik, V.S., Zagorodnjuk, L.H., Volodchenko, A.N. Influence of the inorganic modifier structure on structural composite properties. Int. J. Appl. Eng. Res. 2015. 19(10). Pp. 40617-40622. otwiera się w nowej karcie
  12. Ghasan Fahim Huseien, Abdul Rahman Mohd.Sam, Shah Kwok Wei, Asaad, M.A., Tahir, M.Md., Mirza, J. Properties of ceramic tile waste based alkali-activated mortars incorporating GBFS and fly ash. Construction and Building Materials. 2019. No. 214. Pp. 355- 368. DOI: 10.1016/j.cemconres.2016.08.007 otwiera się w nowej karcie
  13. Abdelgader, H.S., Górski, J. Concrete repair using two-stage concrete method. Materiały Budowlane. 2015. No. 8. Pp. 66-67. DOI: 10.15199/33.2015.08.17 otwiera się w nowej karcie
  14. Lesovik, V.S., Alfimova, N.I., Trunov, P.V. Reduction of energy consumption in manufacturing the fine ground cement. Res. J. Appl. Sci. 2014. 11(9). Pp. 745-748. otwiera się w nowej karcie
  15. Najjar, M.F., Soliman, A.M., Azabi, T.M., Nehdi, M.L. Green sidewalks using sustainable two-stage concrete, Proceed. CSCE Annual Conf. 2016. Resilient Infrastructure, London, Ontario, Canada. otwiera się w nowej karcie
  16. Volodchenko, A.A., Lesovik, V.S., Volodchenko, A.N., Zagorodnjuk, L.H., Pukharenko, Y.V. Composite performance improvement based on non-conventional natural and technogenic raw materials. Int. J. Pharm. Technol. 2016. 8(3). Pp. 18856-18867. otwiera się w nowej karcie
  17. Abdelgader, H.S., Najjar, M.F., Azabi, T.M. Study of underwater concrete using two-stage (pre-placed aggregate) concrete in Libya. J. Struct. Concr. 2010. 11(3). Pp. 161-165. otwiera się w nowej karcie
  18. Mosaberpanah, M.A., Eren O. Effect of Different Ingredients of Ultra High Performance Asphalt Concrete Pavement on Modulus of Elasticity Using Response Surface Modelling. Solid State Phenomena. 2019. No. 292. DOI: 10.1016/j.cemconres.2017.04.007 otwiera się w nowej karcie
  19. Dauji, S., Bhargava, K. Comparison of concrete strength from cube and core records by bootstrap. J. Asian Concr. Fed. 2014. 4(1). Pp. 35-46. otwiera się w nowej karcie
  20. ACI 304.1, Guide for the use of preplaced aggregate concrete for structural and mass concrete applications. American Concrete Institute, Farmington Hills, Michigan, USA. 2005. Pp. 19-24. otwiera się w nowej karcie
  21. Klemm, A.J., Sikora, K.S. The effect of Superabsorbent Polymers (SAP) on microstructure and mechanical properties of fly ash cementitious mortars. Construction and Building Materials. 2013. No. 49. Pp. 134-143. otwiera się w nowej karcie
  22. Mohammadhosseini, H., Awal, A.S.M.A., Sam, A.R.M. Mechanical and thermal properties of prepacked aggregate concrete. Sadhana-Springer. 2016. 41(10). Pp. 1235-1244. otwiera się w nowej karcie
  23. Ibrahim, M., Issa, M.A. Evaluation of chloride and water penetration in concrete with cement containing limestone and IPA. Construction and Building Materials 2016. No. 129. Pp. 279-288. otwiera się w nowej karcie
  24. Prentice, D.P., Walkley, B., Bernal, S.A., Bankhead, M., Hayes, M., Provis, J. Thermodynamic modelling of BFS-PC cements under temperature conditions relevant to the geological disposal of nuclear wastes. Cement and Concrete Research. 2019. No. 119. Pp. 21- 35. DOI: 10.1016/j.cemconres.2019.02.005 otwiera się w nowej karcie
  25. Morohashi, N., Meyer, C., Abdelgader, H.S. Concrete with recycled aggregate produced by the two-stage method. Concr. Plant Intnal. 2013. No. 4. Pp. 34-41.
  26. Niyigena, C., Amziane, S., Chateauneuf, A. Assessing the impact of calculation methods on the variability of Young's modulus for hemp concrete material. Construction and Building Materials. 2018. No. 198. Pp. 332-344. otwiera się w nowej karcie
  27. Abdelgader, H.S. Effect of the quantity of sand on the compressive strength of two-stage concrete. Magazine of Concrete Research. 1996. No. 48(177). Pp. 353-360.
  28. Choi, W.-C., Picornell, M., Hamoush, S.A. Performance of 90-year-old concrete in a historical structure. Construction and Building Materials. 2016. No. 105. Pp. 595-602. otwiera się w nowej karcie
  29. Abdelgader, H.S., Ben-Zeitun, A.E. Effect of grout proportions on tensile strength of two-stage concrete measured by split and double- punch tests. Struct. Concr. 2004. 5(4). Pp. 173-177. otwiera się w nowej karcie
  30. Macie, Z., Skocek, J., Bullerjahn, F., Lothenbach, B., Scrivener, K.L., Ben Haha, M. Early hydration of ye'elimite: Insights from thermodynamic modeling. Cement and Concrete Research. 2019. No. 120. Pp. 152-163. DOI: 10.1016/j.cemconres.2019.03.024 otwiera się w nowej karcie
  31. Shamsuddoha, Md., Hüsken, G., Schmidt, W., Kühne, H.-C., Baeßler M. Ternary mix design of grout material for structural repair using statistical tools. Construction and Building Materials. 2018. No. 189. Pp. 170-180. otwiera się w nowej karcie
  32. Najjar, M., Soliman, A., Nehdi, M. Two-stage concrete made with single, binary and ternary binders. Mater. Struct. Concr. J. 2014. No. 62. Pp. 47-58. otwiera się w nowej karcie
  33. Mariak, A., Kurpińska, M., Wilde, K. Maturity curve for estimating the in-place strength of high performance concrete. 64 Scient. Conf. Committee Civ. Eng. Polish Acad. Sciences and the Science Committee of the Polish Assoc. Civ. Eng. (PZITB). 2019. KRYNICA. Pp. 1-7. otwiera się w nowej karcie
  34. Horszczaruk, E., Brzozowski, P., Adamczewski, G. Influence of Hydrostatic Pressure on Compressive Strength of Self-Consolidating Underwater Concrete. Fifth North Americ. Conf. Des. Use of Self-Consolid. Concr., Chicago. 2013.
  35. Abdelgader, H.S., Górski, J., Khatib, J., El-Baden, A.S. Two-stage concrete: effect of silica fume and superplasticizers on strength. Concr. Plant Precast Technol. 2016. 82(3). Pp. 38-47. otwiera się w nowej karcie
  36. Lukuttsova, N.P., Pykin, A.A. Stability of nanodisperse additives based on metakaolin. Glass and Ceramics. 2015. 71(11-12). Pp. 383-386. otwiera się w nowej karcie
  37. Hunger, M., Brouwers, H.J.H. Flow analysis of water-powder mixtures: application to specific surface area and shape factor. Cement and Concrete Composites. 2009. 31(1). Pp. 39-59. otwiera się w nowej karcie
  38. Coo, M., Pheeraphan, T. Effect of sand, fly ash, and coarse aggregate gradation on preplaced aggregate concrete studied through factorial design. Construction and Building Materials. 2015. No. 93. Pp. 812-821. otwiera się w nowej karcie
  39. Yoon, J.Y., Kim, J.H., Hwang, Y.Y., Shin, D.K. Lightweight Concrete Produced Using a Two-Stage Casting Process. Mater. 2015. No. 8. Pp. 1384-1397. DOI: 10.3390/ma8041384 otwiera się w nowej karcie
  40. Najjar, M.F. Innovating Two-Stage Concrete with Improved Rheological, Mechanical and Durability Properties, Electronic Thesis and Dissertation Repository. 2016. No. 4118 [Online]. URL: https://ir.lib.uwo.ca/etd/4118 otwiera się w nowej karcie
  41. Lukuttsova, N., Kolomatskiy, A., Pykin, A., Nikolaenko, A., Kalugin, A., Tugicova, M. Environmentally safe schungite-based nano- dispersion additive to concrete. Int. J. Appl. Eng. Res. 2014. 22(9). Pp. 15801. otwiera się w nowej karcie
  42. Da Silva, W.R., Stemberk, P. Optimized fuzzy logic model for predicting selfcompacting concrete shrinkage. Mechanika. 2013. 19(1). Pp. 67-72.
  43. Najjar, M., Soliman, A., Nehdi, M. Two-Stage Concrete Made With Single, Binary and Ternary Binders. Mater. Struct. 2016. 49(1). Pp. 317-327. otwiera się w nowej karcie
  44. Coo, M, Pheeraphan, T. Effect of sand, fly ash and limestone powder on preplaced aggregate concrete mechanical properties and reinforced beam shear capacity. Construction and Building Materials. 2016. No. 120. Pp. 581-592. otwiera się w nowej karcie
  45. Nesvetaev, G.V., Koryanova, Y.I., Zhilnikova, T.N. Coefficients for calculation of deformation-strength characteristic of concrete for injection with two-stage expansion. Solid State Phenomena. 2018. No. 284. Pp. 922-928 otwiera się w nowej karcie
  46. Kristowski, A., Grzyl, B., Kurpińska, M., Pszczoła, M. The rigid and flexible road pavements in terms of life cycle costs. Creative Construction Conference 2018, CCC 2018, 30 June -3 July 2018, Ljubljana, Slovenia. Pp. 226-233. DOI 10.3311/CCC2018-030 otwiera się w nowej karcie
  47. Abdelgader, H.S., Górski, J. Inflence of grout proportions on moduls of elasticity of two-stage concrete. Magazine of Concrete Research. 2002. 5(4). Pp. 251-255. otwiera się w nowej karcie
  48. Rajabi, A.M., Omidi, M.F. Simple empirical formula to estimate the main geomechanical parameters of preplaced aggregate concrete and conventional concrete. Construction and Building Materials. 2017. No. 146. Pp. 485-492. DOI 10.1016/j.conbuildmat.2017.04.089 otwiera się w nowej karcie
  49. Telford, T. Condensed Silica Fume in Concrete. FIP Commission on Concrete, State of the Art Report. 1988. otwiera się w nowej karcie
  50. Horszczaruk, E., Sikora, P., Cendrowski, K., Mijowska, E. The effect of elevated temperature on the properties of cement mortars containing nanosilica and heavyweight aggregates. Construction and Building Materials. 2017. No. 137. Pp. 420-431. otwiera się w nowej karcie
  51. Raposeiro da Silva, P., de Brito, J. Fresh-state Properties of Self-compacting Mortar and Concrete with Combined Use of Limestone Filler and Fly Ash. Mater. Res. 2015. 18(5). DOI 10.1590/1516-1439.028715 otwiera się w nowej karcie
  52. ASTM C873, Standard test method for compressive strength of concrete cylinders cast in place in cylinder molds, American Society for Testing and Materials, Philadelphia, 9, USA. 2010. otwiera się w nowej karcie
  53. ASTM C496/C496M, Standard test method for splitting tensile strength of cylindrical concrete specimens, American Society for Testing and Materials, West Conshohocken, PA, USA. 2011. otwiera się w nowej karcie
  54. ASTM C943, Standard practice for making test cylinders and prisms for determining strength and density of preplaced-aggregate concrete in the laboratory, American Society for Testing and Materials, West Conshohocken, PA, USA. 2010. otwiera się w nowej karcie
  55. Najjar, M.F., Soliman, A.M., Nehdi, M.L. Sustainable high-volume fly ash grouts for two-stage concrete. Proceed. CSCE Annual Conf.: Resilient Infrastructure. 2016. London, Ontario, Canada. otwiera się w nowej karcie
  56. Omidi, M.F., Rajabi, A.M., Abdelgader, H.S., Kurpińska, M., Wilde, K. Effect of coarse grain aggregate on strength parameters of two- stage concrete. Materiały Budowlane. 2019 No. 559. DOI: 10.15199/33.2019.03 [Online]. otwiera się w nowej karcie
  57. Klyuev, S.V., Klyuev, A.V., Vatin, N.I. Fiber concrete for the construction industry. Magazine of Civil Engineering. 2018. 84(8). Pp. 41-47. DOI: 10.18720/MCE.84.4. Contacts: Hakim Abdelgader, +79502817945; hakimsa@poczta.onet.pl Roman Fediuk, +79502817945; roman44@yandex.ru Marzena Kurpinska, +79502817945; marzena.kurpinska@pg.edu.pl Jamal Khatib, +79502817945; j.khatib@bau.edu.ib Gunasekaran Murali, +79502817945; murali_220984@yahoo.co.in Andrey Baranov, +79502817945; de_montgomery@mail.ru Roman Timokhin, +79502817945; gera210307@yandex.ru otwiera się w nowej karcie
  58. Abdelgader H.S. How to design concrete produced by a two-stage concreting method // Cement and Concrete Research. 1999. № 29(3). Pp. 331-337. DOI 10.1016/S0008-8846(98)00215-4 otwiera się w nowej karcie
  59. Fediuk R.S., Yevdokimova Y.G., Smoliakov A.K., Stoyushko N.Y., Lesovik V.S. Use of geonics scientific positions for designing of building composites for protective (fortification) structures. IOP Conference Series // Materials Science and Engineering. 2017. № 221. Pp. 012011. otwiera się w nowej karcie
  60. O'Malley J., Abdelgader H.S. Investigation into viability of using two stage (preplaced aggregate) concrete in an Irish setting // Front. Archit. Civ. Eng. China. 2010. № 4(1). Pp. 127-132. otwiera się w nowej karcie
  61. Fediuk R., Timokhin R., Mochalov A., Otsokov K., Lashina I. Performance properties of high-density impermeable cementitious paste // Journal of Materials in Civil Engineering. 2019. № 31(4). otwiera się w nowej karcie
  62. Abdelgader H.S., Najjar M.F. Advances in concreting methods // Proceed. 1st Int. Conf. Sust. Built. Env. Infrastruct. Devel. Countr., Oran, Algeria. 2009. Pp. 315-324.
  63. Abirami T., Loganaganandan M., Gunasekaran M., Fediuk R., Vickhram Sreekrishna R., Vignesh T., Kothandapani K.T. Experimental research on impact response of novel steel fibrous concretes under falling mass impact // Construction and Building Material. 2019. № 222. Pp. 447-457. otwiera się w nowej karcie
  64. Loganina V., Skachkov Yu.P., Ryzhov A.D. Additive based on aluminosilicates for lime dry mortar mixes // IOP Conference Series: Mater. Sci. Eng. 2018. 441. 012028. otwiera się w nowej karcie
  65. Свинцов А.П., Николенко Ю.В., Харун М.И., Казаков А.С. Влияние вязкости нефтепродуктов на деформативные свойства бетона // Инженерно-строительный журнал. 2014. № 7. С. 16-22.
  66. Abdelgader H.S., Elgalhud A.A. Effect of grout proportions on strength of two-stage concrete // Struct. Concr. 2008. 9(3). Pp. 163-170. otwiera się w nowej karcie
  67. Najjar M.F., Ahmed M.S., Mancef L.N. Critical overview of two-stage concrete: properties and applications // Construction and Building Materials. 2014. № 62. Pp. 47-58. DOI 10.1016/j.conbuildmat.2014.03.021 otwiera się w nowej karcie
  68. Volodchenko A.A., Lesovik V.S., Zagorodnjuk L.H., Volodchenko A.N. Influence of the inorganic modifier structure on structural composite properties // Int. J. Appl. Eng. Res. 2015. № 10(19). Pp. 40617-40622. otwiera się w nowej karcie
  69. Ghasan Fahim Huseien, Abdul Rahman Mohd.Sam, Shah Kwok Wei, Asaad M.A., Tahir M.Md., Mirza J. Properties of ceramic tile waste based alkali-activated mortars incorporating GBFS and fly ash // Construction and Building Materials. 2019. № 214. Pp. 355- 368. DOI: 10.1016/j.conbuildmat.2019.04.154 otwiera się w nowej karcie
  70. Abdelgader H.S., Górski J. Concrete repair using two-stage concrete method // Materiały Budowlane. 2015. № 8. Pp. 66-67. DOI: 10.15199/33.2015.08.17 otwiera się w nowej karcie
  71. Lesovik V.S., Alfimova N.I., Trunov,P.V. Reduction of energy consumption in manufacturing the fine ground cement // Res. J. Appl. Sci. 2014. № 9(11). Pp. 745-748. otwiera się w nowej karcie
  72. Najjar M.F., Soliman A.M., Azabi T.M., Nehdi M.L. Green sidewalks using sustainable two-stage concrete // Proceed. CSCE Annual Conf. 2016. Resilient Infrastructure, London, Ontario, Canada. otwiera się w nowej karcie
  73. Volodchenko A.A., Lesovik V.S., Volodchenko A.N., Zagorodnjuk L.H., Pukharenko Y.V. Composite performance improvement based on non-conventional natural and technogenic raw materials // Int. J. Pharm. Technol. 2016. № 8(3). Pp. 18856-18867. otwiera się w nowej karcie
  74. Abdelgader H.S., Najjar M.F., Azabi T.M. Study of underwater concrete using two-stage (pre-placed aggregate) concrete in Libya // J. Struct. Concr. 2010. № 11 (3). Pp. 161-165. otwiera się w nowej karcie
  75. Mosaberpanah M.A., Eren O. Effect of Different Ingredients of Ultra High Performance Asphalt Concrete Pavement on Modulus of Elasticity Using Response Surface Modelling // Solid State Phenomena. 2019. № 292. DOI: 10.4028/www.scientific.net/SSP.292.15 otwiera się w nowej karcie
  76. Dauji S., Bhargava K. Comparison of concrete strength from cube and core records by bootstrap // J. Asian Concr. Fed. 2014. № 4(1). Pp. 35-46. otwiera się w nowej karcie
  77. ACI 304.1, Guide for the use of preplaced aggregate concrete for structural and mass concrete applications, American Concrete Institute, Farmington Hills, Michigan, USA. 2005. Pp. 19-24. otwiera się w nowej karcie
  78. Klemm A.J., Sikora K.S. The effect of Superabsorbent Polymers (SAP) on microstructure and mechanical properties of fly ash cementitious mortars // Construction and Building Materials. 2013. № 49. Pp. 134-143. otwiera się w nowej karcie
  79. Mohammadhosseini H., Awal A.S.M.A., Sam A.R.M. Mechanical and thermal properties of prepacked aggregate concrete // Sadhana- Springer. 2016. № 41(10). Pp. 1235-1244. otwiera się w nowej karcie
  80. Ibrahim M., Issa M.A. Evaluation of chloride and water penetration in concrete with cement containing limestone and IPA // Construction and Building Materials 2016. № 129. Pp. 279-288. otwiera się w nowej karcie
  81. Prentice D.P., Walkley B., Bernal S.A., Bankhead M., Hayes M., Provis J. Thermodynamic modelling of BFS-PC cements under temperature conditions relevant to the geological disposal of nuclear wastes // Cement and Concrete Research. 2019. № 119. Pp. 21- 35. DOI: 10.1016/j.cemconres.2019.02.005 otwiera się w nowej karcie
  82. Morohashi N., Meyer C., Abdelgader H.S. Concrete with recycled aggregate produced by the two-stage method // Concr. Plant Intnal. 2013. № 4. Pp. 34-41.
  83. Niyigena C., Amziane S., Chateauneuf A. Assessing the impact of calculation methods on the variability of Young's modulus for hemp concrete material // Construction and Building Materials. 2018. № 198. Pp. 332-344. otwiera się w nowej karcie
  84. Abdelgader H.S. Effect of the quantity of sand on the compressive strength of two-stage concrete // Magazine of Concrete Research. 1996. № 48(177). Pp. 353-360.
  85. Choi W.-C., Picornell M., Hamoush S.A. Performance of 90-2019-old concrete in a historical structure // Construction and Building Materials. 2016. № 105. Pp. 595-602. otwiera się w nowej karcie
  86. Abdelgader H.S., Ben-Zeitun A.E. Effect of grout proportions on tensile strength of two-stage concrete measured by split and double- punch tests // Struct. Concr. 2004. № 5(4). Pp. 173-177. otwiera się w nowej karcie
  87. Macie Z., Skocek J., Bullerjahn F., Lothenbach B., Scrivener K.L., Ben Haha M. Early hydration of ye'elimite: Insights from thermodynamic modeling // Cement and Concrete Research. 2019. № 120. Pp. 152-163. DOI: 10.1016/j.cemconres.2019.03.024 otwiera się w nowej karcie
  88. Shamsuddoha Md., Hüsken G., Schmidt W., Kühne H.-C., Baeßler M. Ternary mix design of grout material for structural repair using statistical tools // Construction and Building Materials. 2018. № 189. Pp. 170-180. otwiera się w nowej karcie
  89. Najjar M., Soliman A., Nehdi M. Two-stage concrete made with single, binary and ternary binders // Mater. Struct. Concr. J. 2014. № 62. Pp. 47-58. otwiera się w nowej karcie
  90. Mariak A., Kurpińska M., Wilde K. Maturity curve for estimating the in-place strength of high performance concrete. 64 Scient. Conf. Committee Civ. Eng. Polish Acad. Sciences and the Science Committee of the Polish Assoc. Civ. Eng. (PZITB). 2019. KRYNICA. Pp. 1-7. otwiera się w nowej karcie
  91. Horszczaruk E., Brzozowski P., Adamczewski G. Influence of Hydrostatic Pressure on Compressive Strength of Self-Consolidating Underwater Concrete. Fifth North Americ. Conf. Des. Use of Self-Consolid. Concr., Chicago. 2013.
  92. Abdelgader H. S., Górski J., Khatib J., El-Baden A.S. Two-stage concrete: effect of silica fume and superplasticizers on strength // Concr. Plant Precast Technol., 2016. № 82(3). Pp. 38-47. otwiera się w nowej karcie
  93. Lukuttsova N.P., Pykin A.A. Stability of nanodisperse additives based on metakaolin // Glass and Ceramics. 2015. № 71(11-12). Pp. 383-386. otwiera się w nowej karcie
  94. Hunger M., Brouwers H.J.H. Flow analysis of water-powder mixtures: application to specific surface area and shape factor // Cement and Concrete Composites. 2009. № 31(1). Pp. 39-59. otwiera się w nowej karcie
  95. Coo M., Pheeraphan T. Effect of sand, fly ash, and coarse aggregate gradation on preplaced aggregate concrete studied through factorial design // Construction and Building Materials. 2015. № 93. Pp. 812-821. otwiera się w nowej karcie
  96. Yoon J.Y., Kim J.H., Hwang Y.Y., Shin D.K. Lightweight Concrete Produced Using a Two-Stage Casting // Process, Mater. 2015. № 8. Pp. 1384-1397. DOI: 10.3390/ma8041384 otwiera się w nowej karcie
  97. Najjar M.F. Innovating Two-Stage Concrete with Improved Rheological // Mechanical and Durability Properties, Electronic Thesis and Dissertation Repository. 2016. № 4118 [Электронный ресурс]. URL: https://ir.lib.uwo.ca/etd/4118
  98. Lukuttsova N., Kolomatskiy A., Pykin A., Nikolaenko A., Kalugin A., Tugicova M. Environmentally safe schungite-based nano- dispersion additive to concrete // Int. J. Appl. Eng. Res. 2014. № 9(22). Pp. 15801. otwiera się w nowej karcie
  99. Da Silva W.R., Stemberk P. Optimized fuzzy logic model for predicting selfcompacting concrete shrinkage // Mechanika. 2013. № 19(1). Pp. 67-72.
  100. Najjar M., Soliman A., Nehdi M. Two-Stage Concrete Made With Single, Binary and Ternary Binders // Mater. Struct. 2016. № 49(1). Pp. 317-327. otwiera się w nowej karcie
  101. Coo M, Pheeraphan T. Effect of sand, fly ash and limestone powder on preplaced aggregate concrete mechanical properties and reinforced beam shear capacity // Construction and Building Materials. 2016. № 120. Pp. 581-592. . otwiera się w nowej karcie
  102. 45. Nesvetaev G.V., Koryanova Y.I., Zhilnikova T.N. Coefficients for calculation of deformation-strength characteristic of concrete for injection with two-stage expansion // Solid State Phenomena. 2018. № 284. Pp. 922-928 otwiera się w nowej karcie
  103. Kristowski A., Grzyl B., Kurpińska M., Pszczoła M. The rigid and flexible road pavements in terms of life cycle costs // Creative Construction Conference 2018, CCC 2018, 30 June -3 July 2018, Ljubljana, Slovenia. Pp. 226-233. DOI 10.3311/CCC2018-030 otwiera się w nowej karcie
  104. Abdelgader H.S., Górski J. Inflence of grout proportions on moduls of elasticity of two-stage concrete // Magazine of Concrete Research. 2002. № 4(5). Pp. 251-255. otwiera się w nowej karcie
  105. Rajabi A.M., Omidi M.F. Simple empirical formula to estimate the main geomechanical parameters of preplaced aggregate concrete and conventional concrete // Construction and Building Materials. 2017. № 146. Pp. 485-492, DOI 10.1016/j.conbuildmat.2017.04.089 otwiera się w nowej karcie
  106. Telford T. Condensed Silica Fume in Concrete. FIP Commission on Concrete, State of the Art Report. 1988. otwiera się w nowej karcie
  107. Horszczaruk E., Sikora P., Cendrowski K., Mijowska E. The effect of elevated temperature on the properties of cement mortars containing nanosilica and heavyweight aggregates // Construction and Building Materials. 2017. № 137. Pp. 420-431. otwiera się w nowej karcie
  108. Raposeiro da Silva P., de Brito J. Fresh-state Properties of Self-compacting Mortar and Concrete with Combined Use of Limestone Filler and Fly Ash // Mater. Res. 2015. № 18(5). DOI 10.1590/1516-1439.028715 otwiera się w nowej karcie
  109. ASTM C873, Standard test method for compressive strength of concrete cylinders cast in place in cylinder molds, American Society for Testing and Materials, Philadelphia, 9, USA. 2010. otwiera się w nowej karcie
  110. ASTM C496/C496M, «Standard test method for splitting tensile strength of cylindrical concrete specimens», American Society for Testing and Materials, West Conshohocken, PA, USA. 2011. otwiera się w nowej karcie
  111. ASTM C943, Standard practice for making test cylinders and prisms for determining strength and density of preplaced-aggregate concrete in the laboratory, American Society for Testing and Materials, West Conshohocken, PA, USA. 2010. otwiera się w nowej karcie
  112. Najjar M.F., Soliman A.M., Nehdi M.L. Sustainable high-volume fly ash grouts for two-stage concrete // Proceed. CSCE Annual Conf.: Resilient Infrastructure. 2016. London, Ontario, Canada. otwiera się w nowej karcie
  113. Omidi M.F., Rajabi A.M., Abdelgader H.S., Kurpińska M., Wilde K. Effect of coarse grain aggregate on strength parameters of two- stage concrete // Materiały Budowlane. 2019 № 559. DOI: 10.15199/33.2019.03 [Электронный ресурс]. URL: http://www.materialybudowlane.info.pl/pl/11885 otwiera się w nowej karcie
  114. Клюев С.В., Клюев А.В., Ватин Н.И. Фибробетон для строительной индустрии // Инженерно-строительный журнал. 2018. № 8(84). С. 41-47.
  115. Контактные данные: Хаким Абделгадер, 89502817945; эл. почта: hakimsa@poczta.onet.pl Роман Сергеевич Федюк, +79502817945; эл. почта: roman44@yandex.ru Марзена Курпинска, 89502817945; эл. почта: marzena.kurpinska@pg.edu.pl Джамал Хатиб, 89502817945; эл. почта: j.khatib@bau.edu.ib Гунасекаран Мурали, 89502817945; эл. почта: murali_220984@yahoo.co.in Андрей Вячеславович Баранов, 89502817945; эл. почта: de_montgomery@mail.ru Роман Андреевич Тимохин, +79502817945; эл. почта: gera210307@yandex.ru otwiera się w nowej karcie
Weryfikacja:
Politechnika Gdańska

wyświetlono 397 razy

Publikacje, które mogą cię zainteresować

Meta Tagi