Mitigating the Energy Consumption and the Carbon Emission in the Building Structures by Optimization of the Construction Processes - Publikacja - MOST Wiedzy

Wyszukiwarka

Mitigating the Energy Consumption and the Carbon Emission in the Building Structures by Optimization of the Construction Processes

Abstrakt

For decades, among other industries, the construction sector has accounted for high energy consumption and emissions. As the energy crisis and climate change have become a growing concern, mitigating energy usage is a significant issue. The operational and end of life phases are all included in the building life cycle stages. Although the operation stage accounts for more energy consumption with higher carbon emissions, the embodied stage occurs in a time-intensive manner. In this paper, an attempt has been made to review the existing methods, aiming to lower the consumption of energy and carbon emission in the construction buildings through optimizing the construction processes, especially with the lean construction approach. First, the energy consumption and emissions for primary construction materials and processes are introduced. It is followed by a review of the structural optimization and lean techniques that seek to improve the construction processes. Then, the influence of these methods on the reduction of energy consumption is discussed. Based on these methods, a general algorithm is proposed with the purpose of improving the construction processes’ performance. It includes structural optimization and lean and life cycle assessments, which are expected to influence the possible reduction of energy consumption and carbon emissions during the execution of construction works. 

Cytowania

  • 2 0

    CrossRef

  • 0

    Web of Science

  • 2 0

    Scopus

Autorzy (2)

Cytuj jako

Pełna treść

pobierz publikację
pobrano 27 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Creative Commons: CC-BY otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
Publikacja w czasopiśmie
Opublikowano w:
ENERGIES nr 14, wydanie 11,
ISSN: 1996-1073
Rok wydania:
2021
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.3390/en14113287
Bibliografia: test
  1. Giorgi, F. Climate Change: Key Conclusions from the IPCC Fourth assessment report (IPCC-AR4). In International Seminar on Nuclear War and Planetary Emergencies-38th Session; World Scientific: Singapore, 2008; p. 101. otwiera się w nowej karcie
  2. Sieminski, A. Annual Energy Outlook 2015; US Energy Information Administration: Washington, DC, USA, 2015. otwiera się w nowej karcie
  3. Erickson, L.E. Reducing greenhouse gas emissions and improving air quality: Two global challenges. Environ. Prog. Sustain. Energy 2017, 36, 982-988. [CrossRef] otwiera się w nowej karcie
  4. Quiros, D.C.; Smith, J.; Thiruvengadam, A.; Huai, T.; Hu, S. Greenhouse gas emissions from heavy-duty natural gas, hybrid, and conventional diesel on-road trucks during freight transport. Atmos. Environ. 2017, 168, 36-45. [CrossRef] otwiera się w nowej karcie
  5. Schaltegger, S.; Burritt, R.; Martinov-Bennie, N. Greenhouse gas emissions reporting and assurance: Reflections on the current state. Sustain. Account. Manag. Policy J. 2012. [CrossRef] otwiera się w nowej karcie
  6. Global Construction. A Global Forecast for the Construction Industry to 2030; Oxford Economics and Global Construction Perspectives: Londong, UK, 2015. otwiera się w nowej karcie
  7. United Nations Environment Programme. Buildings and Climate Change: Summary for Decision Makers; United Nations Environment Programme: Nairobi, Kenya, 2009. otwiera się w nowej karcie
  8. Lu, W.; Yuan, H. A framework for understanding waste management studies in construction. Waste Manag. 2011, 31, 1252-1260. [CrossRef] [PubMed] otwiera się w nowej karcie
  9. Du, Q.; Li, Z.; Li, Y.; Bai, L.; Li, J.; Han, X. Rebound effect of energy efficiency in China's construction industry: A general equilibrium analysis. Environ. Sci. Pollut. Res. 2019, 26, 12217-12226. [CrossRef] otwiera się w nowej karcie
  10. IEA. 2019 Global Status Report for Buildings and Construction; United Nations Environment Programme:Nairobi, Kenya, 2019. otwiera się w nowej karcie
  11. IEA. Key World Energy Statistics 2020. Int. Energy Agency 2020, 33, 4649. otwiera się w nowej karcie
  12. Peng, C. Calculation of a building's life cycle carbon emissions based on Ecotect and building information modeling. J. Clean. Prod. 2016, 112, 453-465. [CrossRef] otwiera się w nowej karcie
  13. Pérez-Lombard, L.; Ortiz, J.; Pout, C. A review on buildings energy consumption information. Energy Build. 2008, 40, 394-398. [CrossRef] otwiera się w nowej karcie
  14. Hajdukiewicz, M.; Byrne, D.; Keane, M.M.; Goggins, J. Real-time monitoring framework to investigate the environmental and structural performance of buildings. Build. Environ. 2015, 86, 1-16. [CrossRef] otwiera się w nowej karcie
  15. Shiftehfar, R.; Golparvar-Fard, M.; Peña-Mora, F.; Karahalios, K.G.; Aziz, Z. The Application of Visualization for Construction Emission Monitoring. In Construction Research Congress 2010; American Society of Civil Engineers: Reston, VA, USA, 2010; pp. 1396-1405. [CrossRef] otwiera się w nowej karcie
  16. Dixit, M.K.; Culp, C.H.; Fernández-Solís, J.L. System boundary for embodied energy in buildings: A conceptual model for definition. Renew. Sustain. Energy Rev. 2013, 21, 153-164. [CrossRef] otwiera się w nowej karcie
  17. Moncaster, A.; Symons, K. A method and tool for 'cradle to grave' embodied carbon and energy impacts of UK buildings in compliance with the new TC350 standards. Energy Build. 2013, 66, 514-523. [CrossRef] otwiera się w nowej karcie
  18. Ürge-Vorsatz, D.; Danny Harvey, L.D.; Mirasgedis, S.; Levine, M.D. Mitigating CO 2 emissions from energy use in the world's buildings. Build. Res. Inf. 2007, 35, 379-398. [CrossRef] otwiera się w nowej karcie
  19. Sandanayake, M.; Zhang, G.; Setunge, S. Environmental emissions at foundation construction stage of buildings-Two case studies. Build. Environ. 2016, 95, 189-198. [CrossRef] otwiera się w nowej karcie
  20. Bilal, M.; Khan, K.I.A.; Thaheem, M.J.; Nasir, A.R. Current state and barriers to the circular economy in the building sector: Towards a mitigation framework. J. Clean. Prod. 2020, 276, 123250. [CrossRef] otwiera się w nowej karcie
  21. Cang, Y.; Yang, L.; Luo, Z.; Zhang, N. Prediction of embodied carbon emissions from residential buildings with different structural forms. Sustain. Cities Soc. 2020, 54, 101946. [CrossRef] otwiera się w nowej karcie
  22. Plank, R. The principles of sustainable construction. IES J. Part A Civ. Struct. Eng. 2008, 1, 301-307. [CrossRef] otwiera się w nowej karcie
  23. Perez Fernandez, N. The Influence of Construction Materials on Life-Cycle Energy Use and Carbon Dioxide Emissions of Medium Size Commercial Buildings. Master's Thesis, Victoria University of Wellington, Wellington, New Zealand, 2008. otwiera się w nowej karcie
  24. Frey, P.; Anderson, P.; Andrews, M.; Wolf, C. Building Reuse: Finding a Place on American Climate Policy Agendas. 2008. Available online: https://www.semanticscholar.org/paper/Building-Reuse%3A-Finding-a-Place-on-American-Climate-Frey- Anderson/9c4847cfe21652cc13d1d74b6b80311274fcd2a5 (accessed on 3 June 2021).
  25. González, M.J.; García Navarro, J. Assessment of the decrease of CO 2 emissions in the construction field through the selection of materials: Practical case study of three houses of low environmental impact. Build. Environ. 2006, 41, 902-909. [CrossRef] otwiera się w nowej karcie
  26. Chastas, P.; Theodosiou, T.; Kontoleon, K.J.; Bikas, D. Normalising and assessing carbon emissions in the building sector: A review on the embodied CO 2 emissions of residential buildings. Build. Environ. 2018, 130, 212-226. [CrossRef] otwiera się w nowej karcie
  27. Kumanayake, R.; Luo, H.; Paulusz, N. Assessment of material related embodied carbon of an office building in Sri Lanka. Energy Build. 2018, 166, 250-257. [CrossRef] otwiera się w nowej karcie
  28. Robati, M.; Daly, D.; Kokogiannakis, G. A method of uncertainty analysis for whole-life embodied carbon emissions (CO 2 -e) of building materials of a net-zero energy building in Australia. J. Clean. Prod. 2019, 225, 541-553. [CrossRef] otwiera się w nowej karcie
  29. Shang, C.J.; Zhang, Z.H. Assessment of life-cycle carbon emission for buildings. J. Eng. Manag. 2010, 1, 24-38. otwiera się w nowej karcie
  30. Venkatarama Reddy, B.; Jagadish, K. Embodied energy of common and alternative building materials and technologies. Energy Build. 2003, 35, 129-137. [CrossRef] otwiera się w nowej karcie
  31. Kaewunruen, S.; Sresakoolchai, J.; Yu, S. Global Warming Potentials Due to Railway Tunnel Construction and Maintenance. Appl. Sci. 2020, 10, 6459. [CrossRef] otwiera się w nowej karcie
  32. Faccio, M.; Persona, A.; Sgarbossa, F.; Zanin, G. Industrial maintenance policy development: A quantitative framework. Int. J. Prod. Econ. 2014, 147, 85-93. [CrossRef] otwiera się w nowej karcie
  33. Kaewunruen, S.; Sresakoolchai, J.; Peng, J. Life Cycle Cost, Energy and Carbon Assessments of Beijing-Shanghai High-Speed Railway. Sustainability 2019, 12, 206. [CrossRef] otwiera się w nowej karcie
  34. Carrasqueira, M.; Machado, V.C. Strategic logistics: Re-designing companies in accordance with Lean Principles. Int. J. Manag. Sci. Eng. Manag. 2008, 3, 294-302. [CrossRef] otwiera się w nowej karcie
  35. Shah, R.; Ward, P.T. Defining and developing measures of lean production. J. Oper. Manag. 2007, 25, 785-805. [CrossRef] otwiera się w nowej karcie
  36. Elkington, J. Partnerships fromcannibals with forks: The triple bottom line of 21st-century business. Environ. Qual. Manag. 1998, 8, 37-51. [CrossRef] otwiera się w nowej karcie
  37. Belleri, A.; Marini, A. Does seismic risk affect the environmental impact of existing buildings? Energy Build. 2016, 110, 149-158. [CrossRef] otwiera się w nowej karcie
  38. Mergos, P.E. Seismic design of reinforced concrete frames for minimum embodied CO 2 emissions. Energy Build. 2018, 162, 177-186. [CrossRef] otwiera się w nowej karcie
  39. Moussavi Nadoushani, Z.S.; Akbarnezhad, A. Effects of structural system on the life cycle carbon footprint of buildings. Energy Build. 2015, 102, 337-346. [CrossRef] otwiera się w nowej karcie
  40. Yeo, D.; Gabbai, R.D. Sustainable design of reinforced concrete structures through embodied energy optimization. Energy Build. 2011, 43, 2028-2033. [CrossRef] otwiera się w nowej karcie
  41. Heravi, G.; Firoozi, M. Production process improvement of buildings' prefabricated steel frames using value stream mapping. Int. J. Adv. Manuf. Technol. 2017, 89, 3307-3321. [CrossRef] otwiera się w nowej karcie
  42. Li, L.; Chen, K. Quantitative assessment of carbon dioxide emissions in construction projects: A case study in Shenzhen. J. Clean. Prod. 2017. [CrossRef] otwiera się w nowej karcie
  43. Rother, M.; Shook, J. Learning to See: Value Stream Mapping to Add Value and Eliminate Muda; Lean Enterprise Institute: Cambridge, MA, USA, 2003. otwiera się w nowej karcie
  44. Rosenbaum, S.; Toledo, M.; Gonzalez, V. Green-lean approach for assessing environmental and production waste in construction. In Proceedings of the 20th Annual Conference of the IGLC, San Diego, CA, USA, 18-22 July 2012.
  45. Heravi, G.; Rostami, M.; Kebria, M.F. Energy consumption and carbon emissions assessment of integrated production and erection of buildings' pre-fabricated steel frames using lean techniques. J. Clean. Prod. 2020, 253, 120045. [CrossRef] otwiera się w nowej karcie
  46. You, F.; Hu, D.; Zhang, H.; Guo, Z.; Zhao, Y.; Wang, B.; Yuan, Y. Carbon emissions in the life cycle of urban building system in China-A case study of residential buildings. Ecol. Complex. 2011, 8, 201-212. [CrossRef] otwiera się w nowej karcie
  47. Heravi, G.; Nafisi, T.; Mousavi, R. Evaluation of energy consumption during production and construction of concrete and steel frames of residential buildings. Energy Build. 2016, 130, 244-252. [CrossRef] otwiera się w nowej karcie
  48. Chae, C.U. Comparative study on the amount of CO 2 emission of building matereals between reinforced concrete and steel strycture buildings using the input-output analysys. In Proceedings of the World Sustainable Building Conterence, Tokyo, Japan, 27-29 September 2005; Volume 9.
  49. Acquaye, A.; Duffy, A.; Basu, B. Embodied emissions abatement-A policy assessment using stochastic analysis. Energy Policy 2011, 39, 429-441. [CrossRef] otwiera się w nowej karcie
  50. Li, X.; Shen, G.Q.; Wu, P.; Yue, T. Integrating Building Information Modeling and Prefabrication Housing Production. Autom. Con- str. 2019, 100, 46-60. [CrossRef] otwiera się w nowej karcie
  51. Intini, F.; Kühtz, S. Recycling in buildings: an LCA case study of a thermal insulation panel made of polyester fiber, recycled from post-consumer PET bottles. Int. J. Life Cycle Assess. 2011, 16, 306-315. [CrossRef] otwiera się w nowej karcie
  52. Chen, T.; Burnett, J.; Chau, C. Analysis of embodied energy use in the residential building of Hong Kong. Energy 2001, 26, 323-340. [CrossRef] otwiera się w nowej karcie
  53. Gao, W.; Ariyama, T.; Ojima, T.; Meier, A. Energy impacts of recycling disassembly material in residential buildings. Energy Build. 2001, 33, 553-562. [CrossRef] otwiera się w nowej karcie
  54. Crishna, N.; Banfill, P.; Goodsir, S. Embodied energy and CO 2 in UK dimension stone. Resour. Conserv. Recycl. 2011, 55, 1265-1273. [CrossRef] otwiera się w nowej karcie
  55. Gursel, A.P.; Ostertag, C. Comparative life-cycle impact assessment of concrete manufacturing in Singapore. Int. J. Life Cycle Assess. 2017, 22, 237-255. [CrossRef] otwiera się w nowej karcie
  56. Morel, J.; Mesbah, A.; Oggero, M.; Walker, P. Building houses with local materials: means to drastically reduce the environmental impact of construction. Build. Environ. 2001, 36, 1119-1126. [CrossRef] otwiera się w nowej karcie
  57. Akadiri, P.O.; Chinyio, E.A.; Olomolaiye, P.O. Design of A Sustainable Building: A Conceptual Framework for Implementing Sustainability in the Building Sector. Buildings 2012, 2, 126-152. [CrossRef] otwiera się w nowej karcie
  58. Mao, C.; Shen, Q.; Shen, L.; Tang, L. Comparative study of greenhouse gas emissions between off-site prefabrication and conventional construction methods: Two case studies of residential projects. Energy Build. 2013, 66, 165-176. [CrossRef] otwiera się w nowej karcie
  59. Abey, S.T.; Anand, K.B. Embodied Energy Comparison of Prefabricated and Conventional Building Construction. J. Inst. Eng. Ser. A 2019, 100, 777-790. [CrossRef] otwiera się w nowej karcie
  60. Lim, J.; Kim, S. Evaluation of CO 2 emission reduction effect using in-situ production of precast concrete components. J. Asian Arch. Build. Eng. 2020, 19, 176-186. [CrossRef] otwiera się w nowej karcie
  61. Dong, L.; Wang, Y.; Li, H.; Jiang, B.; Al-Hussein, M. Carbon Reduction Measures-Based LCA of Prefabricated Temporary Housing with Renewable Energy Systems. Sustainability 2018, 10, 718. [CrossRef] otwiera się w nowej karcie
  62. Kong, A.; Kang, H.; He, S.; Li, N.; Wang, W. Study on the Carbon Emissions in the Whole Construction Process of Prefabricated Floor Slab. Appl. Sci. 2020, 10, 2326. [CrossRef] otwiera się w nowej karcie
  63. Qaemi, M.; Heravi, G. Sustainable Energy Performance Indicators of Green Building in Developing Countries. In Construction Research Congress 2012; American Society of Civil Engineers: Reston, VA, USA, 2012; pp. 1961-1970. [CrossRef] otwiera się w nowej karcie
  64. Nowotarski, P.; Pasławski, J.; Dallasega, P. Multi-Criteria Assessment of Lean Management Tools Selection in Construction. Arch. Civ. Eng. 2021, 67, 711-726. otwiera się w nowej karcie
  65. Ohno, T. Toyota Production System: Beyond Large-Scale Production; CRC Press: Boca Ration, FL, USA, 1988. otwiera się w nowej karcie
  66. Rosenbaum, S.; Toledo, M.; González, V. Improving Environmental and Production Performance in Construction Projects Using Value-Stream Mapping: Case Study. J. Constr. Eng. Manag. 2014, 140, 04013045. [CrossRef] otwiera się w nowej karcie
  67. ISO. 14040: Environmental Management-Life Cycle Assessment-Principles and Framework; ISO: Geneva, Switzerland, 2006. otwiera się w nowej karcie
Weryfikacja:
Brak weryfikacji

wyświetlono 84 razy

Publikacje, które mogą cię zainteresować

Meta Tagi