Molecular dynamics simulations of the affinity of chitin and chitosan for collagen: the effect of pH and the presence of sodium and calcium cations - Publikacja - MOST Wiedzy

Wyszukiwarka

Molecular dynamics simulations of the affinity of chitin and chitosan for collagen: the effect of pH and the presence of sodium and calcium cations

Abstrakt

Chitosan and chitin are promising biopolymers used in many areas including biomedical applications, such as tissue engineering and viscosupplementation. Chitosan shares similar properties with hyaluronan, a natural component of synovial fluid, making it a good candidate for joint disease treatment. The structural and energetic consequences of intermolecular interactions are crucial for understanding the biolubrication phenomenon and other important biomedical features. However, the properties of biopolymers, including their complexation abilities, are influenced by the nature of the aqueous medium with which they interact. In this study, we employed molecular dynamics simulations to describe the effect of pH and the presence of sodium and calcium cations on the stability of molecular complexes formed by collagen type II with chitin and chitosan oligosaccharides. Based on Gibbs free energy of binding, all considered complexes are thermodynamically stable over the entire pH range. The affinity between chitosan oligosaccharide and collagen is highly influenced by pH, while oligomeric chitin shows no pH-dependent effect on the stability of molecular assemblies with collagen. On the other hand, the presence of sodium and calcium cations has a negligible effect on the affinity of chitin and chitosan for collagen.

Cytowania

  • 0

    CrossRef

  • 0

    Web of Science

  • 0

    Scopus

Cytuj jako

Pełna treść

pobierz publikację
pobrano 11 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Creative Commons: CC-BY-NC-ND otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
Publikacja w czasopiśmie
Opublikowano w:
Progress on Chemistry and Application of Chitin and Its Derivatives nr 28, strony 136 - 150,
ISSN: 1896-5644
Rok wydania:
2023
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.15259/pcacd.28.013
Bibliografia: test
  1. Melnikova D, Khisravashirova C, Smotrina T, Skirda V; (2023) Interaction of hyaluronan acid with some proteins in aqueous solution as studied by NMR. Membranes 13, 436. DOI:10.3390/membranes13040436 otwiera się w nowej karcie
  2. Bignami A, Hosley M, Dahl D; (1993) Hyaluronic acid and hyaluronic acid-binding proteins in brain extracellular matrix. Anat Embryol 188, 419-433. DOI:10.1007/ BF00190136 otwiera się w nowej karcie
  3. Bełdowski P, Przybyłek M, Raczyński P, Dedinaite A, Górny K, Wieland F, Dendzik Z, Sionkowska A, Claesson PM; (2021) Albumin-hyaluronan interactions: influence of ionic composition probed by molecular dynamics. Int J Mol Sci 22, 12360. DOI:10.3390/ijms222212360 otwiera się w nowej karcie
  4. Bełdowski P, Przybyłek M, Sionkowska A, Cysewski P, Gadomska M, Musiał K, Gadomski A; (2022) Effect of chitosan deacetylation on its affinity to type III collagen: a molecular dynamics study. Materials 15, 463. DOI:10.3390/ma15020463 otwiera się w nowej karcie
  5. Przybyłek M, Bełdowski P, Wieland F, Cysewski P, Sionkowska A; (2022) Collagen type II-chitosan interactions as dependent on hydroxylation and acetylation inferred from molecular dynamics simulations. Molecules 28, 154. DOI:10.3390/ molecules28010154 otwiera się w nowej karcie
  6. Bełdowski P, Przybyłek M, Bełdowski D, Dedinaite A, Sionkowska A, Cysewski P, Claesson PM; (2022) Collagen type II-hyaluronan interactions -the effect of proline hydroxylation: a molecular dynamics study. J Mater Chem B 10, 9713-9723. DOI:10.1039/D2TB01550A otwiera się w nowej karcie
  7. Schiraldi C, Stellavato A, de Novellis F, La Gatta A, De Rosa M; (2016) Hyaluronan viscosupplementation: state of the art and insight into the novel cooperative hybrid complexes based on high and low molecular weight HA of potential interest in osteoarthritis treatment. Clin Cases Miner Bone Metab 13, 36-37. DOI:10.11138/ ccmbm/2016.13.1.036 otwiera się w nowej karcie
  8. Peck J, Slovek A, Miro P, Vij N, Traube B, Lee C, Berger AA, Kassem H, Kaye AD, Sherman WF, Abd-Elsayed A; (2021) A comprehensive review of viscosupplemen- tation in osteoarthritis of the knee. Orthop Rev 13. DOI:10.52965/001c.25549 otwiera się w nowej karcie
  9. Comblain F, Rocasalbas G, Gauthier S, Henrotin Y; (2017) Chitosan: a promising polymer for cartilage repair and viscosupplementation. Biomed Mater Eng 28, S209-S215. DOI:10.3233/BME-171643 otwiera się w nowej karcie
  10. Rieger R, Boulocher C, Kaderli S, Hoc T; (2017) Chitosan in viscosupplementation: in vivo effect on rabbit subchondral bone. BMC Musculoskelet Disord 18, 350. DOI:10.1186/s12891-017-1700-4 otwiera się w nowej karcie
  11. Tsaih ML, Chen RH; (2003) The effect of reaction time and temperature during heterogenous alkali deacetylation on degree of deacetylation and molecular weight of resulting chitosan. J Appl Polym Sci 88, 2917-2923. DOI:10.1002/app.11986 otwiera się w nowej karcie
  12. He X, Li K, Xing R, Liu S, Hu L, Li P; (2016) The production of fully deacetylated chitosan by compression method. Egypt J Aquat Res 42, 75-81. DOI:10.1016/j. ejar.2015.09.003 otwiera się w nowej karcie
  13. Yuan Y, Chesnutt BM, Haggard WO, Bumgardner JD; (2011) Deacetylation of chitosan: material characterization and in vitro evaluation via albumin adsorption and pre-osteoblastic cell cultures. Materials 4, 1399-1416. DOI:10.3390/ma4081399 otwiera się w nowej karcie
  14. No HK, Cho YI, Kim HR, Meyers SP; (2000) Effective deacetylation of chitin under conditions of 15 psi/121 °C. J Agric Food Chem 48, 2625-2627. DOI:10.1021/ jf990842l otwiera się w nowej karcie
  15. Jaworska MM; (2012) Kinetics of enzymatic deacetylation of chitosan. Cellulose 19, 363-369. DOI:10.1007/s10570-012-9650-3 otwiera się w nowej karcie
  16. Molecular dynamics simulations of the affinity of chitin and chitosan for collagen: the effect of pH and the presence of sodium and calcium cations otwiera się w nowej karcie
  17. Harmsen RAG, Tuveng TR, Antonsen SG, Eijsink VGH, Sørlie M; (2019) Can we make chitosan by enzymatic deacetylation of chitin? Molecules 24, 3862. DOI:10.3390/molecules24213862 otwiera się w nowej karcie
  18. Martinou A, Kafetzopoulos D, Bouriotis V; (1995) Chitin deacetylation by enzymatic means: monitoring of deacetylation processes. Carbohydr Res 273, 235- 242. DOI:10.1016/0008-6215(95)00111-6 otwiera się w nowej karcie
  19. Casadidio C, Peregrina DV, Gigliobianco MR, Deng S, Censi R, Di Martino P; (2019) Chitin and chitosans: characteristics, eco-friendly processes, and applications in cosmetic science. Mar Drugs 17, 369. DOI:10.3390/md17060369 otwiera się w nowej karcie
  20. Maddaloni M, Vassalini I, Alessandri I; (2020) Green routes for the development of chitin/chitosan sustainable hydrogels. Sustain Chem 1, 325-344. DOI:10.3390/ suschem1030022 otwiera się w nowej karcie
  21. Benhabiles MS, Salah R, Lounici H, Drouiche N, Goosen MFA, Mameri N; (2012) Antibacterial activity of chitin, chitosan and its oligomers prepared from shrimp shell waste. Food Hydrocoll 29, 48-56. DOI:10.1016/j.foodhyd.2012.02.013 otwiera się w nowej karcie
  22. Hafsa J, Smach MA, Charfeddine B, Limem K, Majdoub H, Rouatbi S; (2016) Antioxidant and antimicrobial proprieties of chitin and chitosan extracted from Parapenaeus Longirostris shrimp shell waste. Ann Pharm Françaises 74, 27-33. DOI:10.1016/j.pharma.2015.07.005 otwiera się w nowej karcie
  23. Ngo DH, Kim SK; (2014) Antioxidant effects of chitin, chitosan, and their derivatives. In: Kim S-K (ed), Advances in Food and Nutrition Research, Vol. 73. Elsevier, Oxford, 15-31. DOI:10.1016/B978-0-12-800268-1.00002-0 otwiera się w nowej karcie
  24. Piekarska K, Sikora M, Owczarek M, Jóźwik-Pruska J, Wiśniewska-Wrona M; (2023) Chitin and chitosan as polymers of the future-obtaining, modification, life cycle assessment and main directions of application. Polymers 15, 793. DOI:10.3390/ polym15040793 otwiera się w nowej karcie
  25. Salvatore L, Gallo N, Natali ML, Terzi A, Sannino A, Madaghiele M; (2021) Mimicking the hierarchical organization of natural collagen: toward the development of ideal scaffolding material for tissue regeneration. Front Bioeng Biotechnol 9. DOI:10.3389/fbioe.2021.644595 otwiera się w nowej karcie
  26. Alcaide-Ruggiero L, Molina-Hernández V, Granados MM, Domínguez JM; (2021) Main and minor types of collagens in the articular cartilage: the role of collagens in repair tissue evaluation in chondral defects. Int J Mol Sci 22, 13329. DOI:10.3390/ ijms222413329 otwiera się w nowej karcie
  27. Ferreira AM, Gentile P, Chiono V, Ciardelli G; (2012) Collagen for bone tissue regeneration. Acta Biomater 8, 3191-3200. DOI:10.1016/j.actbio.2012.06.014 otwiera się w nowej karcie
  28. Kim CH, Park SJ, Yang DH, Chun HJ; (2018). Chitosan for tissue engineering. In: Chun, H, Park, K, Kim, CH, Khang, G (eds), Novel Biomaterials for Regenerative Medicine. Advances in Experimental Medicine and Biology, vol 1077. Springer, Singapore, 475-485. DOI:10.1007/978-981-13-0947-2_25 otwiera się w nowej karcie
  29. Ressler A; (2022) Chitosan-based biomaterials for bone tissue engineering applications: a short review. Polymers 14, 3430. DOI:10.3390/polym14163430 otwiera się w nowej karcie
  30. Kołodziejska M, Jankowska K, Klak M, Wszoła M; (2021) Chitosan as an underrated polymer in modern tissue engineering. Nanomaterials 11, 3019. DOI:10.3390/ nano11113019 otwiera się w nowej karcie
  31. Dasgupta S, Gope A, Mukhopadhyay A, Kumar P, Chatterjee J, Barui A; (2023) Chitosan- collagen-fibrinogen uncrosslinked scaffolds possessing skin regeneration and vascular- ization potential. J Biomed Mater Res Part A 111, 725-739. DOI:10.1002/jbm.a.37488 otwiera się w nowej karcie
  32. Kulka K, Sionkowska A; (2023) Chitosan based materials in cosmetic applications: a review. Molecules 28, 1817. DOI:10.3390/molecules28041817 otwiera się w nowej karcie
  33. Guzmán E, Ortega F, Rubio RG; (2022) Chitosan: a promising multifunctional cosmetic ingredient for skin and hair care. Cosmetics 9, 99. DOI:10.3390/ cosmetics9050099 otwiera się w nowej karcie
  34. Aranaz I, Acosta N, Civera C, Elorza B, Mingo J, Castro C, Gandía M, Heras Caballero A; (2018) Cosmetics and cosmeceutical applications of chitin, chitosan and their derivatives. Polymers 10, 213. DOI:10.3390/polym10020213 otwiera się w nowej karcie
  35. Liao J, Hou B, Huang H; (2022) Preparation, properties and drug controlled release of chitin-based hydrogels: an updated review. Carbohydr Polym 283, 119177. DOI:10.1016/j.carbpol.2022.119177 otwiera się w nowej karcie
  36. Parhi R; (2020) Drug delivery applications of chitin and chitosan: a review. Environ Chem Lett 18, 577-594. DOI:10.1007/s10311-020-00963-5 otwiera się w nowej karcie
  37. Sionkowska A, Wisniewski M, Skopinska J, Kennedy CJ, Wess TJ; (2004) Molecular interactions in collagen and chitosan blends. Biomaterials 25, 795-801. DOI:10.1016/ S0142-9612(03)00595-7 otwiera się w nowej karcie
  38. Li H, Qi Z, Zheng S, Chang Y, Kong W, Fu C, Yu Z, Yang X, Pan S; (2019) The application of hyaluronic acid-based hydrogels in bone and cartilage tissue engineering. Adv Mater Sci Eng 2019. DOI:10.1155/2019/3027303 otwiera się w nowej karcie
  39. Han CM, Zhang LP, Sun JZ, Shi HF, Zhou J, Gao CY; (2010) Application of collagen- chitosan/fibrin glue asymmetric scaffolds in skin tissue engineering. J Zhejiang Univ Sci B 11, 524-530. DOI:10.1631/jzus.B0900400 otwiera się w nowej karcie
  40. Zakhem E, Bitar K; (2015) Development of chitosan scaffolds with enhanced mechanical properties for intestinal tissue engineering applications. J Funct Biomater 6, 999-1011. DOI:10.3390/jfb6040999 otwiera się w nowej karcie
  41. Martínez A, Blanco MD, Davidenko N, Cameron RE; (2015) Tailoring chitosan/ collagen scaffolds for tissue engineering: Effect of composition and different crosslinking agents on scaffold properties. Carbohydr Polym 132, 606-619. DOI:10.1016/j.carbpol.2015.06.084 otwiera się w nowej karcie
  42. Dai X, Chen Y; (2023) Computational biomaterials: computational simulations for biomedicine. Adv Mater 35, 2204798. DOI:10.1002/adma.202204798 otwiera się w nowej karcie
  43. Fadda E, Woods RJ; (2010) Molecular simulations of carbohydrates and protein- carbohydrate interactions: motivation, issues and prospects. Drug Discov Today 15, 596-609. DOI:10.1016/j.drudis.2010.06.001 otwiera się w nowej karcie
  44. Plazinska A, Plazinski W; (2021) Comparison of Carbohydrate force fields in molecular dynamics simulations of protein-carbohydrate complexes. J Chem Theory Comput 17, 2575-2585. DOI:10.1021/acs.jctc.1c00071 otwiera się w nowej karcie
  45. Muanprasat C, Chatsudthipong V; (2017) Chitosan oligosaccharide: biological activities and potential therapeutic applications. Pharmacol Ther 170, 80-97. DOI:10.1016/j.pharmthera.2016.10.013 otwiera się w nowej karcie
  46. Vasilieva T, Sigarev A, Kosyakov D, Ul'yanovskii N, Anikeenko E, Chuhchin D, Ladesov A, Hein AM, Miasnikov V; (2017) Formation of low molecular weight oligomers from chitin and chitosan stimulated by plasma-assisted processes. Carbohydr Polym 163, 54-61. DOI:10.1016/j.carbpol.2017.01.026 otwiera się w nowej karcie
  47. Anil S; (2022) Potential medical applications of chitooligosaccharides. Polymers 14, 3558. DOI:10.3390/polym14173558 otwiera się w nowej karcie
  48. Yin H, Du Y, Zhang J; (2009) Low molecular weight and oligomeric chitosans and their bioactivities. Curr Top Med Chem 9, 1546 -1559. DOI:10.2174/156802609789909795 otwiera się w nowej karcie
  49. RCSB Protein Data Bank (RCSB PDB), code: 6JEC. https://www.rcsb.org/ otwiera się w nowej karcie
  50. PubChem, National Institutes of Health (NIH), PubChem CID 24978517. https:// pubchem.ncbi.nlm.nih.gov/compound/Chitin-Octamer Molecular dynamics simulations of the affinity of chitin and chitosan for collagen: the effect of pH and the presence of sodium and calcium cations otwiera się w nowej karcie
  51. Trott O, Olson AJ; (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31, 455-461. DOI:10.1002/jcc.21334 otwiera się w nowej karcie
  52. Duan Y, Wu C, Chowdhury S, Lee MC, Xiong G, Zhang W, Yang R, Cieplak P, Luo R, Lee T, Caldwell J, Wang J, Kollman P; (2003) A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. J Comput Chem 24, 1999-2012. DOI:10.1002/jcc.10349 otwiera się w nowej karcie
  53. Kirschner KN, Yongye AB, Tschampel SM, González-Outeiriño J, Daniels CR, Foley BL, Woods RJ; (2008) GLYCAM06: A generalizable biomolecular force field. Carbohydrates. J Comput Chem 29, 622-655. DOI:10.1002/jcc.20820 otwiera się w nowej karcie
  54. Krieger E, Vriend G; (2014) YASARA View -molecular graphics for all devices -from smartphones to workstations. Bioinformatics 30, 2981-2982. DOI:10.1093/ bioinformatics/btu426 otwiera się w nowej karcie
  55. Krieger E, Dunbrack RL, Hooft RWW, Krieger B; (2012) Assignment of protonation states in proteins and ligands: Combining pK a prediction with hydrogen bonding network optimization. Methods Mol Biol 819, 405-421. DOI:10.1007/978-1-61779- 465-0_25 otwiera się w nowej karcie
  56. Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG; (1995) A smooth particle mesh Ewald method. J Chem Phys 103, 8577-8593. DOI:10.1063/1.470117 otwiera się w nowej karcie
  57. Roy A, Gauld JW; (2022) Molecular dynamics investigation on the effects of protonation and lysyl hydroxylation on sulfilimine cross-links in collagen IV. ACS Omega 7, 39680-39689. DOI:10.1021/acsomega.2c03360 otwiera się w nowej karcie
  58. Baker N, Holst M, Wang F; (2000) Adaptive multilevel finite element solution of the Poisson-Boltzmann equation II. Refinement at solvent-accessible surfaces in biomolecular systems. J Comput Chem 21, 1343-1352. DOI:10.1002/1096- 987X(20001130)21:15<1343::AID-JCC2>3.0.CO;2-K otwiera się w nowej karcie
  59. Holst M, Baker N, Wang F; (2000) Adaptive multilevel finite element solution of the Poisson-Boltzmann equation I. Algorithms and examples. J Comput Chem 21, 1319-1342. DOI:10.1002/1096-987X(20001130)21:15<1319::AID-JCC1>3.0.CO;2-8 otwiera się w nowej karcie
  60. Hayashi T, Nagai Y; (1973) Effect of pH on the stability of collagen molecule in solution. J Biochem 73, 999-1006. DOI:10.1093/oxfordjournals.jbchem.a130184 otwiera się w nowej karcie
  61. Russell AE; (1974) Effect of pH on thermal stability of collagen in the dispersed and aggregated states (Short Communication). Biochem J 139, 277-280. DOI:10.1042/ bj1390277 otwiera się w nowej karcie
  62. Joseph SM, Krishnamoorthy S, Paranthaman R, Moses JA, Anandharamakrishnan C; (2021) A review on source-specific chemistry, functionality, and applications of chitin and chitosan. Carbohydr Polym Technol Appl 2, 100036. DOI:10.1016/j. carpta.2021.100036 otwiera się w nowej karcie
  63. Novikov VY, Derkach SR, Konovalova IN, Dolgopyatova N V., Kuchina YA; (2023) Mechanism of heterogeneous alkaline deacetylation of chitin: a review. Polymers 15, 1729. DOI:10.3390/polym15071729 otwiera się w nowej karcie
  64. Hua Y, Ma C, Wei T, Zhang L, Shen J; (2020) Collagen/chitosan complexes: preparation, antioxidant activity, tyrosinase inhibition activity, and melanin synthesis. Int J Mol Sci 21, 313. DOI:10.3390/ijms21010313 otwiera się w nowej karcie
  65. Wu D, Zhu L, Li Y, Zhang X, Xu S, Yang G, Delair T; (2020) Chitosan-based colloidal polyelectrolyte complexes for drug delivery: a review. Carbohydr Polym 238, 116126. DOI:10.1016/j.carbpol.2020.116126 otwiera się w nowej karcie
  66. Nikolova D, Simeonov M, Tzachev C, Apostolov A, Christov L, Vassileva E; (2022) Polyelectrolyte complexes of chitosan and sodium alginate as a drug delivery system for diclofenac sodium. Polym Int 71, 668-678. DOI:10.1002/pi.6273 otwiera się w nowej karcie
  67. https://doi.org/10.15259/PCACD.28.013 otwiera się w nowej karcie
  68. Maciej Przybyłek, Piotr Bełdowski
  69. Vasiliu S, Racovita S, Popa M, Ochiuz L, Peptu CA; (2019) Chitosan-based polyelectrolyte complex hydrogels for biomedical applications. In: Mondal M (ed), Cellulose-Based Superabsorbent Hydrogels. Polymers and Polymeric Composites: A Reference Series. Cham, Switzerland, 1696-1725. otwiera się w nowej karcie
  70. Szymańska E, Winnicka K; (2015) Stability of chitosan-a challenge for phar- maceutical and biomedical applications. Mar Drugs 13, 1819-1846. DOI:10.3390/ md13041819 otwiera się w nowej karcie
  71. Wilcox KG, Kemerer GM, Morozova S; (2023) Ionic environment effects on collagen type II persistence length and assembly. J Chem Phys 158, 044903. DOI:10.1063/5.0131792 otwiera się w nowej karcie
  72. Zargar V, Asghari M, Dashti A; (2015) A review on chitin and chitosan polymers: structure, chemistry, solubility, derivatives, and applications. ChemBioEng Rev 2, 204-226. DOI:10.1002/cben.201400025 otwiera się w nowej karcie
  73. Indrani DJ, Lukitowati F, Yulizar Y; (2017) Preparation of chitosan/collagen blend membranes for wound dressing: a study on FTIR spectroscopy and mechanical properties. IOP Conf Ser Mater Sci Eng 202, 012020. DOI:10.1088/1757- 899X/202/1/012020 otwiera się w nowej karcie
  74. Staroszczyk H, Sztuka K, Wolska J, Wojtasz-Pająk A, Kołodziejska I; (2014) Interactions of fish gelatin and chitosan in uncrosslinked and crosslinked with EDC films: FT-IR study. Spectrochim Acta Part A Mol Biomol Spectrosc 117, 707-712. DOI:10.1016/j.saa.2013.09.044 otwiera się w nowej karcie
  75. Park SH, Song T, Bae TS, Khang G, Choi BH, Park SR, Min BH; (2012) Comparative analysis of collagens extracted from different animal sources for application of cartilage tissue engineering. Int J Precis Eng Manuf 13, 2059-2066. DOI:10.1007/ s12541-012-0271-4 otwiera się w nowej karcie
  76. Li J, Li Y, Li Y, Yang Z, Jin H; (2020) Physicochemical properties of collagen from Acaudina molpadioides and its protective effects against H 2 O 2 -induced injury in RAW264.7 cells. Mar Drugs 18, 370. DOI:10.3390/md18070370 otwiera się w nowej karcie
  77. Ahmad M, Benjakul S, Nalinanon S; (2010) Compositional and physicochemical characteristics of acid solubilized collagen extracted from the skin of unicorn leatherjacket (Aluterus monoceros). Food Hydrocoll 24, 588-594. DOI:10.1016/j. foodhyd.2010.03.001 otwiera się w nowej karcie
  78. Oliveira V de M, Assis CRD, Costa B de AM, Neri RC de A, Monte FTD, Freitas HMS da CV, França RCP, Santos JF, Bezerra R de S, Porto ALF; (2021) Physical, biochemical, densitometric and spectroscopic techniques for characterization collagen from alternative sources: a review based on the sustainable valorization of aquatic by-products. J Mol Struct 1224, 129023. DOI:10.1016/j.molstruc.2020.129023 otwiera się w nowej karcie
  79. Rashid S, Shen C, Yang J, Liu J, Li J; (2018) Preparation and properties of chitosan- metal complex: some factors influencing the adsorption capacity for dyes in aqueous solution. J Environ Sci 66, 301-309. DOI:10.1016/j.jes.2017.04.033 otwiera się w nowej karcie
  80. Rhazi M, Desbrières J, Tolaimate A, Rinaudo M, Vottero P, Alagui A, El Meray M; (2002) Influence of the nature of the metal ions on the complexation with chitosan. Eur Polym J 38, 1523-1530. DOI:10.1016/S0014-3057(02)00026-5 otwiera się w nowej karcie
  81. Shinde RN, Pandey AK, Acharya R, Guin R, Das SK, Rajurkar NS, Pujari PK; (2013) Chitosan-transition metal ions complexes for selective arsenic(V) preconcentration. Water Res 47, 3497-3506. DOI:10.1016/j.watres.2013.03.059 otwiera się w nowej karcie
  82. Jóźwiak T, Mielcarek A, Janczukowicz W, Rodziewicz J, Majkowska-Gadomska J, Chojnowska M; (2018) Hydrogel chitosan sorbent application for nutrient removal from soilless plant cultivation wastewater. Environ Sci Pollut Res 25, 18484-18497. DOI:10.1007/s11356-018-2078-z otwiera się w nowej karcie
Weryfikacja:
Brak weryfikacji

wyświetlono 48 razy

Publikacje, które mogą cię zainteresować

Meta Tagi