Nitrification, denitrification, and dephosphatation capability of activated sludge during co-treatment of intermediate-age landfill leachates with municipal wastewater - Publikacja - MOST Wiedzy


Nitrification, denitrification, and dephosphatation capability of activated sludge during co-treatment of intermediate-age landfill leachates with municipal wastewater


This study focuses on the possible use and efficacy of the co-treatment of landfill leachate (intermediate-age) with municipal wastewater. The nitrification, denitrification, and dephosphatation capability of activated sludge acclimated with a mixture of raw municipal wastewater (RWW) with gradually increasing amounts of raw landfill leachate (RLL) (from 0.5 to 5% v/v) were tested. Biochemical tests were conducted simultaneously in batch reactors (BRs). According to the obtained data, the ammonia utilization rate (AUR) was 3.68 g N/(kg volatile suspended solids (VSS)·h) for RWW, and it increased to 5.78 g N/(kg VSS·h) with the addition of 5% RLL. The nitrate utilization rate under anoxic conditions (NURAX) remained at a comparable level of 1.55–1.98 g N/(kg VSS·h). During the anoxic phase, both nitrate utilization and phosphorus uptake occurred, suggesting that denitrifying phosphorus-accumulating organisms (DPAOs) utilized N–NO3. With the addition of RLL, the rates of anoxic and aerobic phosphate uptake (PURAX and PURAE) and phosphate release rate (PRR) decreased. The PRR was likely negatively influenced by high N–NO3 concentrations but not completely inhibited due to the availability of a biodegradable fraction of chemical oxygen demand (COD). Thus, monitoring the NH4–N load in wastewater treatment plant influent before co-treatment is more informative than that using hydraulic-based criteria.


  • 2


  • 4

    Web of Science

  • 5


Pełna treść

pobierz publikację
pobrano 72 razy


Copyright (2017 Informa UK Limited, trading as Taylor & Francis Group)

Informacje szczegółowe

Publikacja w czasopiśmie
artykuł w czasopiśmie wyróżnionym w JCR
Opublikowano w:
ENVIRONMENTAL TECHNOLOGY nr 39, strony 986 - 996,
ISSN: 0959-3330
Rok wydania:
Opis bibliograficzny:
Fudala-Książek S., Kulbat E., Łuczkiewicz A.: Nitrification, denitrification, and dephosphatation capability of activated sludge during co-treatment of intermediate-age landfill leachates with municipal wastewater// ENVIRONMENTAL TECHNOLOGY. -Vol. 39, nr. 8 (2018), s.986-996
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1080/09593330.2017.1317842
Bibliografia: test
  1. Lema JM, Mendez R, Blazquez R. Characteristics of landfill leachates and alternatives for their treatment: a review. Water Air Soil Poll. 1988;40(3):223-250. doi:10.1007/ BF00163730 otwiera się w nowej karcie
  2. Černila Zajc N, Glancem M, Grömping M, et al. Laboratory scale and pilot study of the treatment of municipal landfill leachate. Chem Biochem Eng Q. 2004;18(1):77-84.
  3. Kulikowska D, Klimiuk E. The effect of landfill age on municipal leachate composition. Bioresource Technol. 2008;99(13):5981-5985. otwiera się w nowej karcie
  4. Renou S, Givaudan JG, Poulain S, et al. Landfill leachate treatment: review and opportunity. J Hazard Mater. 2008;150(3):468-493. doi:10.1016/j.jhazmat.2007.09.077 otwiera się w nowej karcie
  5. Rodríguez J, Castrillón L, Marañón E, et al. Removal of non- biodegradable organic matter from landfill leachates by adsorption. Water Res. 2004;38(14-15):3297-3303. doi:10.1016/j.watres.2004.04.032 otwiera się w nowej karcie
  6. Fudala-Ksiazek S, Luczkiewicz A, Fitobor K, et al. Nitrogen removal via the nitrite pathway during wastewater co- treatment with ammonia-rich landfill leachates in a sequencing batch reactor. Environ Sci Pollut R. 2014;21 (12):7307-7318. otwiera się w nowej karcie
  7. British Standards Institution. Water quality -determi- nation of suspended solids -method by filtration through glass fiber filters. Standard No. EN 872:2005. otwiera się w nowej karcie
  8. Henze M, van Loosdrecht MCM, Ekama G, et al., editors. Biological wastewater treatment. Principles, modelling and design. London: IWA Publishing; 2008. otwiera się w nowej karcie
  9. Tchobanoglous G, Burton FL, Stensel HD. Wastewater engineering: treatment and reuse. 4th ed. New York (NY): McGraw-Hill; 2003.
  10. Makinia J, Dobiegała E, Swinarski M. The Polish perspec- tive on adopting EU standards for nitrogen removal at large WWTP's -case studies. Water Sci Technol. 2004;50 (7):27-34. otwiera się w nowej karcie
  11. Sorm R, Bortone G, Wanner J, et al. Behaviour of activated sludge from a system with anoxic phosphate uptake. Water Sci Technol. 1998;37(4-5):563-566.
  12. Lopez-Vazquez CM, Hooijmans CM, Brdjanovic D, et al. Factors affecting the microbial populations at full-scaleen- hanced biological phosphorus removal (EBPR) wastewater treatment plants in the Netherlands. Water Res. 2008; 42:2349-2360. doi:10.1016/j.watres.2008.01.001 otwiera się w nowej karcie
  13. Kuba T, van Loosdrecht MCM, Brandse FA, et al. Occurrence of denitrifying phosphorus removing bacteria in modified UCT-type wastewater treatment plants. Water Res. 1997a;31:777-786. otwiera się w nowej karcie
  14. Kuba T, van Loosdrecht MCM, Heijnen JJ. Biological dephosphatation by activated sludge under denitrifying conditions: pH influence and occurrence of denitrifying dephosphatation in a full-scale waste water treatment plant. Water Sci Technol. 1997b;36(12):75-82. doi:10. 1016/S0273-1223(97)00713-0 otwiera się w nowej karcie
  15. Drewnowski J, Makinia J. The role of colloidal and particu- late organic compounds in denitrification and EBPR occur- ring in a full-scale activated sludge system. Water Sci Technol. 2011;63(2):318-324. otwiera się w nowej karcie
  16. Swinarski M, Makinia J, Czerwionka K, et al. Comparison of the effects of conventional and alternative external carbon sources on enhancing the denitrification process. Water Environ Res. 2009;81(9):896-906. otwiera się w nowej karcie
  17. Drewnowski J, Makinia J. The role of biodegradable par- ticulate and colloidal organic compounds in biological nutrient removal activated sludge systems. Int J Environ Sci Te. 2014;11(7):1973-1988. otwiera się w nowej karcie
  18. Çeçen F, Aktas Ö. Effect of PAC addition in combined treatment of landfill leachate and domestic wastewater in semi-continuously fed batch and continuous-flow reac- tors. Water SA. 2001;27(2):177-188.
  19. Yusof N, Hassan MA, Phang LY, et al. Nitrification of ammonium-rich sanitary landfill leachate. Waste Manage. 2010;30:100-109. doi:10.1016/j.wasman.2009. 08.018 otwiera się w nowej karcie
  20. Kulikowska D, Bernat K. Nitritation-denitritation in landfill leachate with glycerine as a carbon source. Bioresource Technol. 2013;142:297-303. doi:10.1016/j.biortech.2013. 04.119 otwiera się w nowej karcie
  21. Kim H, Hao OJ, McAvoy TJ. SBR system for phosphorus removal: ASM2 and simplified linear model. J Environ Eng. 2001;127(2):98-104. otwiera się w nowej karcie
  22. Makinia J. Performance prediction of full-scale biological nutrient removal systems using complex activated sludge models. Hanover: Publications of Institute for Sanitary Engineering and Waste Managament of Leibniz University of Hanover; 2006.
  23. Kuba T, Wachtmeister A, van Loosdrecht MCM, et al. Effect of nitrate on phosphorus release in biological phosphorus removal systems. Water Sci Technol. 1994;30(6):263-269. otwiera się w nowej karcie
  24. Yuan Q, Oleszkiewicz J. Interaction between denitrifica- tion and phosphorus removal in a nutrient removing SBR system. Proceedings of the 81 st Annual WEF Technical Exhibition and Conference WEFTEC; 2008 Oct 15-16; otwiera się w nowej karcie
  25. Naidoo V, Urbain V, Buckley C. Characterization of waste- water and activated sludge from European municipal wastewater treatment plants using the NUR test. Water Sci Technol. 1998;38(1):303-310. doi:10.1016/S0273-1223 (98)00415-6 otwiera się w nowej karcie
  26. Hou H, Wang S, Peng Y, et al. Anoxic phosphorus removal in a pilot scale anaerobic-anoxic oxidation ditch process. Front Environ Sci En. 2009;3(1):106-111. otwiera się w nowej karcie
  27. Jabari P, Munz G, Oleszkiewicz JA. Selection of denitrifying phosphorous accumulating organisms in IFAS systems: comparison of nitrite with nitrate as an electron acceptor. Chemosphere. 2014;109:20-27. doi:10.1016/j. chemosphere.2014.03.002 otwiera się w nowej karcie
  28. Zeng RJ, Saunders AM, Yuan Z, et al. Identification and comparison of aerobic and denitrifying polyphosphate- accumulating organisms. Biotechnol Bioeng. 2003;83 (2):140-149. otwiera się w nowej karcie
  29. Carvalho G, Lemos PC, Oehmen A, et al. Denitrifying phos- phorus removal: linking the process performance with the microbial community structure. Water Res. 2007;41 (19):4383-4396. otwiera się w nowej karcie
  30. Merzouki M, Delgenes JP, Bernet N, et al. Polyphosphate- accumulating and denitrifying bacteria isolated from anaerobic-anoxic and anaerobic-aerobic sequencing batch reactors. Curr Microbiol. 1999;38(1):9-17. otwiera się w nowej karcie
Politechnika Gdańska

wyświetlono 32 razy

Publikacje, które mogą cię zainteresować

Meta Tagi