Optimum Choice of Randomly Oriented Carbon Nanotube Networks for UV-Assisted Gas Sensing Applications - Publikacja - MOST Wiedzy

Wyszukiwarka

Optimum Choice of Randomly Oriented Carbon Nanotube Networks for UV-Assisted Gas Sensing Applications

Abstrakt

We investigated the noise and photoresponse characteristics of various optical transparencies of nanotube networks to identify an optimal randomly oriented network of carbon nanotube (CNT)-based devices for UV-assisted gas sensing applications. Our investigation reveals that all of the studied devices demonstrate negative photoconductivity upon exposure to UV light. Our studies confirm the effect of UV irradiation on the electrical properties of CNT networks and the increased photoresponse with decreasing UV light wavelength. We also extend our analysis to explore the lowfrequency noise properties of different nanotube network transparencies. Our findings indicate that devices with higher nanotube network transparencies exhibit lower noise levels. We conduct additional measurements of noise and resistance in an ethanol and acetone gas environment, demonstrating the high sensitivity of higher-transparent (lower-density) nanotube networks. Overall, our results indicate that lower-density nanotube networks hold significant promise as a viable choice for UV-assisted gas sensing applications.

Cytowania

  • 3

    CrossRef

  • 0

    Web of Science

  • 3

    Scopus

Autorzy (12)

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuły w czasopismach
Opublikowano w:
ACS Sensors nr 8, strony 3547 - 3554,
ISSN: 2379-3694
Język:
angielski
Rok wydania:
2023
Opis bibliograficzny:
Drozdowska K., Rehman A., Smulko J., Krajewska A., Stonio B., Sai P., Przewłoka A., Filipiak M., Pavłov K., Cywinski G., Lyubchenko D. V., Rumyantsev S.: Optimum Choice of Randomly Oriented Carbon Nanotube Networks for UV-Assisted Gas Sensing Applications// ACS Sensors -Vol. 8,iss. 9 (2023), s.3547-3554
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1021/acssensors.3c01185
Źródła finansowania:
Weryfikacja:
Politechnika Gdańska

wyświetlono 87 razy

Publikacje, które mogą cię zainteresować

Meta Tagi