Relationship between conversion rate of glucosinolates to isothiocyanates/indoles and genotoxicity of individual parts of Brassica vegetables - Publikacja - MOST Wiedzy

Wyszukiwarka

Relationship between conversion rate of glucosinolates to isothiocyanates/indoles and genotoxicity of individual parts of Brassica vegetables

Abstrakt

The studies on the characterisation of glucosinolates (GLs) and their breakdown products in Brassicaceae species focus mainly on the edible parts. However, other products, e.g., dietary supplements, may be produced also from non-edible parts such as roots or early forms of growth: seeds or sprouts. Biological activity of these products depends on quantitative and qualitative GL composition, but is also strictly determined by GL conversion rate to chemopreventive isothiocyanates (ITC) and indoles. The aim of this study was to evaluate the conversion rate of GLs to ITC and indoles for various plant parts of chosen Brassica species in relation to their biological activity. For this purpose, the composition of GLs and their degradation products was determined as well as activity of myrosinase. Toxicological part of studies involved: MTT assay, restriction analysis, comet assay and Ames test. The composition of GLs and conversion rate to ITC and indoles was found to differ significantly between Brassica species and individual parts of the plant. The highest efficiency of conversion was observed for edible parts of plants: more than 70%, while in sprouts, it reached less than 1%, though myrosinase activity did not differ. The conversion rate directly affected biological activity of plant material. Higher concentration of ITC/indoles in the sample led to the increase of cytotoxicity. Majority of tested samples were able to induce covalent DNA modification in cell-free system. It was also confirmed that the presence of indolic GLs and products of their degradation stimulated mutagenicity, but did not lead to DNA fragmentation in cultured cells.

Cytowania

  • 2 1

    CrossRef

  • 0

    Web of Science

  • 2 4

    Scopus

Cytuj jako

Pełna treść

pobierz publikację
pobrano 33 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Creative Commons: CC-BY otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuły w czasopismach
Opublikowano w:
EUROPEAN FOOD RESEARCH AND TECHNOLOGY nr 245, strony 383 - 400,
ISSN: 1438-2377
Język:
angielski
Rok wydania:
2019
Opis bibliograficzny:
Kołodziejski D., Piekarska A., Hanschen F., Pilipczuk T., Tietz M. F., Kusznierewicz B., Bartoszek-Pączkowska A.: Relationship between conversion rate of glucosinolates to isothiocyanates/indoles and genotoxicity of individual parts of Brassica vegetables// EUROPEAN FOOD RESEARCH AND TECHNOLOGY -Vol. 245, (2019), s.383-400
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1007/s00217-018-3170-9
Bibliografia: test
  1. Verhoeven DT, Goldbom RA, van Poppel GA (1996) Epidemio- logical studies on Brassica vegetables and cancer risk. Cancer Epidemiol Biomark Prev 5:733-748
  2. Tram KL, Gallicchio L, Boyd K, Shiels M, Hammond E, Tao X, Chen L, Robinson KA, Caulfield LE, Herman JG, Guallar E, Alberg AJ (2009) Cruciferous vegetable consumption and lung cancer risk: a systematic review. Cancer Epidemiol Biomark Prev 18:184-195
  3. Terry P, Wolk A, Persson I, Magnusson C, Smith-Warner SA, Willet WC, Spiegelman D, Hunter D (2001) Brassica vegetables and breast cancer risk. JAMA 285:2975-2977
  4. Kristal AR, Lampe JW (2002) Brassica vegetables and prostate cancer risk: a review of the epidemiological evidence. Nutr Can- cer 42:1-9 otwiera się w nowej karcie
  5. Liu B, Mao Q, Cao M, Xie L (2012) Cruciferous vegetables intake and risk of prostate cancer: a meta-analysis. Int J Urol 19:134-141 otwiera się w nowej karcie
  6. Mérrilon JM, Ramawat KG, Gopal K (eds) (2017) Glucosinolates. Reference series in phytochemistry, Springer International Pub- lishing Switzerland otwiera się w nowej karcie
  7. de Torres ZM, Grant M, Bones A, Bennett R, Yin SL, Kissen R, Rossiter J (2005) Characterisation of recombinant epithiospecifier protein and its overexpression in Arabidopsis thaliana. Phyto- chemistry 66:859-867
  8. Wittstock U, Agerbirk N, Stauber EJ, Olsen CE, Hippler M, Mitchell-Olds T, Gershenson J, Vogel H (2004) Successful herbi- vore attack due to metabolic diversion of a plant chemical defense. Proc Natl Acad Sci USA 101:4859-4864 otwiera się w nowej karcie
  9. Zhang Z, Ober J, Kliebenstein D (2006) The gene controlling the quantitative trait locus epithiospecifier modifier 1 alters glucosi- nolate hydrolysis and insect resistance in Arabidopsis. Plant Cell 18:1524-1536 otwiera się w nowej karcie
  10. Burow M, Wittstock U (2009) Regulation and function of specifier proteins in plants. Phytochem Rev 8:87-99 otwiera się w nowej karcie
  11. Williams D, Critchley C, Pun S, Chaliha M, O'Hare T (2009) Differing mechanisms of simple nitrile formation on glucosinolate degradation in Lepidium sativum and Nasturtium officinale seeds. Phytochem 70:1401-1409 otwiera się w nowej karcie
  12. Fahey JW, Zalcmann AT, Talalay P (2001) The chemical diver- sity and distribution of glucosinolates and isothiocyanates among plants. Phytochem 56:5-51 otwiera się w nowej karcie
  13. Piekarska A, Bartoszek A, Namieśnik J (2010) Biofumigation as an alternative method of crop protection. Ecol Chem Eng 17:527-547
  14. Grubb CD, Abel S (2006) Glucosinolate metabolism and its con- trol. Trends Plant Sci 11:89-100 otwiera się w nowej karcie
  15. Wenga J-R, Tsai C-H, Kulpc SK, Chenc C-S (2008) Indole-3-car- binol as a chemopreventive and anti-cancer agent. Cancer Lett 262:153-163 otwiera się w nowej karcie
  16. Clarke JD, Dashwood DH, Ho E (2008) Multi-targeted prevention of cancer by sulforaphane. Cancer Lett 269:291-304 otwiera się w nowej karcie
  17. Agerbirk N, De Vos M, Kim JH, Jander G (2009) Indole glu- cosinolate breakdown and its biological effects. Phytochem Rev 8:101-120 otwiera się w nowej karcie
  18. Surh YJ, Na HK (2008) NF-κB and Nrf2 as prime molecular tar- gets for chemoprevention and cytoprotection with anti-inflamma- tory and antioxidant phytochemicals. Genes Nutr 4:313-317 otwiera się w nowej karcie
  19. Nair S, Li W, Kong AN (2007) Natural dietary anticancer chem- opreventive compounds: redox-mediated differential signaling mechanisms in cytoprotection of normal cells versus cytotoxicity in tumor cells. Acta Pharmacol Sin 28:459-472 otwiera się w nowej karcie
  20. Herr I, Büchler MW (2010) Dietary constituents of broccoli and other cruciferous vegetables: implications for prevention and therapy of cancer. Cancer Treat Rev 36:377-383 otwiera się w nowej karcie
  21. Latté K, Appel KE, Lampen A (2011) Health benefits and possible risks of broccoli-an overview. Food Chem Toxicol 49:3287-3309 otwiera się w nowej karcie
  22. Dinkova-Kostova AT, Kostov RV (2012) Glucosinolates and iso- thiocyanates in health and disease. Trends Mol Med 18:337-347 otwiera się w nowej karcie
  23. Hanlon N, Coldham N, Gielbert A, Kuhnert N, Sauer MJ, King LJ, Ioannides C (2008) Absolute bioavailability and dose-dependent pharmacokinetic behavior of dietary doses of the chemopreventive isothiocyanate sulforaphane in rat. Brit J nutr 99:559-564 otwiera się w nowej karcie
  24. Ji Y, Kuo Y, Morris ME (2005) Pharmacokinetics of dietary phenethyl isothiocyanates in rats. Pharmac Res 22:1658-1666 otwiera się w nowej karcie
  25. Zhang Y, Callaway EC (2002) High cellular accumulation of sul- foraphane, a dietary anticarcinogen, is followed by rapid trans- porter-mediated export as a glutathione conjugate. Biochem J 364:301-307 otwiera się w nowej karcie
  26. Dinkova-Kostova AT, Talalay P, Sharkey J, Zhang Y, Holtzclaw WD, Wang XJ, David E, Schiavoni KH, Finlayson S, Mierke DF, Honda H (2010) An exceptionally potent inducer of cytoprotective enzymes. J Biol Chem 285:33747-33755 otwiera się w nowej karcie
  27. Brown KK, Hampton MB (2011) Biological targets of isothiocy- anates. Biochim Biophys Acta 1810:888-894 otwiera się w nowej karcie
  28. Baillie TA, Slatter JG (1991) Glutathione: a vehicle for the trans- port of chemically reactive metabolites in vivo. Acc Chem Res 24:264-270 otwiera się w nowej karcie
  29. Kassahun K, Davis M, Hu P, Martin B, Baillie T (1997) Biotrans- formation of the naturally occurring isothiocyanate sulforaphane in the rat: identification of phase I metabolites and glutathione conjugates. Chem Res Toxicol 10:1228-1233 otwiera się w nowej karcie
  30. Mi L, Hood BL, Stewart NA, Xiao Z, Govind G, Wang X, Conrads TP, Veenstra TD, Chung FL (2011) Identification of potential pro- tein targets of isothiocyanates by proteomics. Chem Res Toxicol 24:1735-1743 otwiera się w nowej karcie
  31. Drobnica L, Kristian P, Augustin J (1997) The chemistry of the single bond -NCS group. In: Patai S (ed) The chemistry of cyanates and their thio derivatives, vol 2. Wiley otwiera się w nowej karcie
  32. Hanschen FS, Brüggemann N, Brodehl A, Mewis I, Schreiner M (2012) Characterization of products from the reaction of glucosi- nolate-derived isothiocyanates with cysteine and lysine deriva- tives formed in either model systems or broccoli sprouts. J Agric Food Chem 60:7735-7745 otwiera się w nowej karcie
  33. Nakamura T, Kawai Y, Kitamoto N, Osawa T, Kato Y (2009) Covalent modification of lysine residues by allyl isothiocyanate in physiological conditions: plausible transformation of isothio- cyanate from thiol to amine. Chem Res Toxicol 22:536-542 otwiera się w nowej karcie
  34. Kumar A, Sabbioni G (2010) New biomarkers for monitoring the levels of isothiocyanates in humans. Chem Res Toxicol 23:756-765 otwiera się w nowej karcie
  35. Lewandowska A, Przychodzeń W, Bartoszek A, Kołodziejski D, Namieśnik J, Kusznierewicz B (2014) Isothiocyanates may chemi- cally detoxify mutagenic amines formed in heat processed meat. Food Chem 157:105-110 otwiera się w nowej karcie
  36. Baasanjav-Gerber C, Hollnagel H, Brauchmann J, Iori R, Glatt H (2011) Detection of genotoxicants in Brassicales using endog- enous DNA as a surrogate target and adducts determined by 32 P-postlabelling as an experimental endpoint. Mutagenesis 26:407-411 otwiera się w nowej karcie
  37. Baasanjav-Gerber C, Monien B, Mewis I, Schreiner M, Barillari J, Iori R, Glatt H (2011) Identification of glucosinolate congeners able to form DNA adducts and to induce mutations upon activa- tion by myrosinase. Mol Nutr Food Res 55:783-792 otwiera się w nowej karcie
  38. Glatt H, Baasanjav-Gerber C, Schumacher F, Monien B, Schreiner M, Frank H, Seidel A, Engst W (2011) 1-Methoxy-3-indolylme- thyl glucosinolate; a potent genotoxicant in bacterial and mam- malian cells: Mechanisms of bioactivation. Chem-Biol Interact 192:81-86 otwiera się w nowej karcie
  39. Schumacher F, Engst W, Monien BH, Florian S, Schnapper A, Steinhauser L, Albert K, Frank H, Seidel A, Glatt H (2012) Detec- tion of DNA adducts originating from 1-methoxy-3-indolylmethyl glucosinolate using isotope-dilution UPLC-ESI-MS/MS. Anal Chem 84:6256-6262 otwiera się w nowej karcie
  40. Schumacher F, Florian S, Schnapper A, Monien BH, Mewis I, Schreiner M, Seidel A, Engst W, Glatt H (2013) A secondary metabolite of Brassicales, 1-methoxy-3-indolylmethyl glucosi- nolate, as well as its degradation product, 1-methoxy-3-indolyl- methyl alcohol, forms DNA adducts in the mouse, but in varying tissues and cells. Arch Toxicol 88:823-836 otwiera się w nowej karcie
  41. Brown PD, Tokuhisa JG, Reichelt M, Gershenzon J (2003) Variation of glucosinolate accumulation among different organs and developmental stages of Arabidopsis thaliana. Phytochem 62:471-481 otwiera się w nowej karcie
  42. Velasco P, Soengas P, Vilar M, Cartea MA (2008) Comparison of glucosinolate profiles in leaf and seed tissues of different Brassica napus crops. J Am Soc Hortic Sci 133:551-558 otwiera się w nowej karcie
  43. Piekarska A, Kusznierewicz B, Kołodziejski D, Pilipczuk T, Szczygłowska M, Bodnar M, Bączek-Kwinta R, Konieczka P, Namieśnik J, Bartoszek A (2013) The innovative exploitation of Brassica vegetables in health quality food production chain. Acta Hortic 1005:71-85 otwiera się w nowej karcie
  44. Kusznierewicz B, Bartoszek A, Wolska L, Drzewiecki J, Gor- instein S, Namieśnik J (2008) Partial characterization of white cabbages (Brassica oleracea var. capitata f. alba). LWT 41:1-9 otwiera się w nowej karcie
  45. Kushad MM, Brown AF, Kurilich AC, Juvik AJ, Klein BP, Wallig MA, Jeffery EF (1999) Variation of glucosinolates in vegetable crops of Brassica oleracea. J Agric Food Chem 47:1541-1548 otwiera się w nowej karcie
  46. Ciska E, Martyniak-Przybyszewska B, Kozlowska H (2000) Con- tent of glucosinolates in cruciferous vegetables grown at the same site for two years under different climatic conditions. J Agric Food Chem 48:2862-2867 otwiera się w nowej karcie
  47. Śmiechowska A, Bartoszek A, Namieśnik J (2010) Determination of glucosinolates and their decomposition products-indoles and isothiocyanates in cruciferous vegetables. Crit Rev Anal Chem 40:202-216 otwiera się w nowej karcie
  48. Maldini M, Baima S, Morelli G, Scaccini C, Natella F (2012) A liquid chromatography-mass spectrometry approach to study "glu- cosinolom" in broccoli sprouts. J Mass Spectrom 47:1198-1206 otwiera się w nowej karcie
  49. Bellostas N, Kachlicki P, Sørensen J, Sørensen H (2007) Glucosi- nolate profiling of seeds and sprouts of B. oleracea varieties used for food. Sci Hortic 114:234-242 otwiera się w nowej karcie
  50. Baenas N, Moreno DA, Garcia-Viguera C (2012) Selecting sprouts of Brassicaceae for optimum phytochemical composition. J Agric Food Chem 60:11409-11420 otwiera się w nowej karcie
  51. Hanschen FS, Herz C, Schlotz N, Kupke F, Bartolomé Rodríguez MM (2015) The Brassica epithionitrile 1-cyano-2,3-epithiopro- pane triggers cell death in human liver cancer cells in vitro. Mol Nutr Food Res 59:2178-2189 otwiera się w nowej karcie
  52. Piekarska A, Kusznierewicz B, Meller M, Dziedziul K, Namieśnik J, Bartoszek A (2013) Myrosinase activity in different plant sam- ples; optimisation of measurement conditions for spectrophoto- metric and pH-stat methods. Ind Crop Prod 50:58-67 otwiera się w nowej karcie
  53. Zhang Y, Wade K, Prestera T, Talalay P (1996) Quantitative deter- mination of isothiocyanates, dithiocarbamates, carbon disulfide, and related thiocarbonyl compounds by cyclocondensation with 1,2-benzenedithiol. Anal Biochem 239:160-167 otwiera się w nowej karcie
  54. Piekarska A, Kołodziejski D, Pilipczuk T, Bodnar M, Konieczka P, Kusznierewicz B, Hanschen FS, Schreiner M, Cyprys J, Gro- szewska M, Namieśnik J, Bartoszek A (2014) The influence of selenium addition during germination of Brassica seeds on health- promoting potential of sprouts. Int J Sci Food Nutr 65:692-702 otwiera się w nowej karcie
  55. Witzel K, Hanschen FS, Klopsch R, Ruppel S, Schreiner M (2015) Verticillium longisporum infection induces organ-specific glucosi- nolate degradation in Arabidopsis thaliana. Front Plant Sci 6:508 otwiera się w nowej karcie
  56. Poleska-Muchlado Z, Piekarska A, Kusznierewicz B, Pilipc- zuk T, Szczygłowska M, Malinowska-Pańczyk E, Konieczka P, Namieśnik J, Bartoszek A (2013) The comparison of biological potential of white cabbage varieties using the Accumulated Sur- vival Index (ASI) concept. Book of abstracts, 595, Eurofoodchem XVII conference, 07-10.05.2013 r., Istanbul, Turkey
  57. Flückiger-Isler S, Kamber M (2012) Direct comparison of the Ames microplate format (MPF) test in liquid medium with the standard Ames pre-incubation assay on agar plates by use of equivocal to weakly positive test compounds. Mutat Res 747:36-45 otwiera się w nowej karcie
  58. Kołodziejski D, Brillowska-Dąbrowska A, Bartoszek A (2015) The extended version of restriction analysis approach for the examination of the ability of low-molecular-weight compounds to modify DNA in a cell-free system. Food Chem Toxicol 75:118-125 otwiera się w nowej karcie
  59. Hanlon P, Barnes D (2011) Phytochemical composition and biological activity of 8 varieties of radish (Raphanus sativus L.) sprouts and mature taproots. J Food Sci 76:185-192 otwiera się w nowej karcie
  60. Wiesner M, Schreiner M, Glatt H (2014) High mutagenic activity of juice from pak choi (Brassica rapa ssp. chinensis) sprouts due to its content of 1-methoxy-3-indolylmethyl glucosinolate, and its enhancement by elicitation with methyl jasmonate. Food Chem Toxicol 67:10-16 otwiera się w nowej karcie
  61. Grose KR, Bjeldanes LF (1992) Oligomerization of indole-3-car- binol in aqueous acid. Chem Res Toxicol 5:188-193 otwiera się w nowej karcie
  62. Hrncirik K, Valusek J, Velisek J (2001) Investigation of ascor- bigen as a breakdown product of glucobrassicin autolysis in Bras- sica vegetables. Eur Food Res Technol 212:576-581 otwiera się w nowej karcie
  63. De Nicola G, Bagatta M, Pagnotta E, Angelino D, Gennari L, Ninfali P, Rollin P, Iori R (2013) Comparison of bioactive phyto- chemical content and release of isothiocyanates in selected Bras- sica sprouts. Food Chem 141:297-303 otwiera się w nowej karcie
  64. Kadir NHA, David R, Rossiter JT, Gooderham NJ (2015) The selective cytotoxicity of the alkenyl glucosinolate hydrolysis prod- ucts and their presence in Brassica vegetables. Toxicol 334:59-71 otwiera się w nowej karcie
  65. Kupke F, Herz C, Hanschen FS, Platz S, Odongo GA, Helmig S, Rodríguez MMB, Schreiner M, Rohn S, Lamy E (2016) Cytotoxic and genotoxic potential of food-borne nitriles in a liver in vitro model. Sci Rep 6:37631 otwiera się w nowej karcie
  66. Pocasap P, Weerapreeyakul N (2016) Sulforaphene and sul- foraphane in commonly consumed cruciferous plants contributed to antiproliferation in HCT116 colon cancer cells. Asian Pac J Trop Biomed 6:119-124 otwiera się w nowej karcie
  67. Gonçalves AL, Lemos M, Niero R, de Andrade SF, Maistro EL (2012) Evaluation of the genotoxic and antigenotoxic potential of Brassica oleracea L. var. acephala D.C. in different cells of mice. J Ethnopharmacol 143:740-745 otwiera się w nowej karcie
  68. Charron CS, Clevidence BA, Albaugh GA, Kramer MH, Vinyard BT, Milner JA, Novotny JA (2013) Assessment of DNA damage and repair in adults consuming allyl isothiocyanate or Brassica vegetables. J Nutr Biochem 24:894-902 otwiera się w nowej karcie
  69. Kassie F, Parzefall W, Musk S, Johnson I, Lamprecht G, Sontag G, Knasmuller S (1996) Genotoxic effects of crude juices from Bras- sica vegetables and juices and extracts from phytopharmaceutical preparations and spices of cruciferous plants origin in bacterial and mammalian cells. Chem-Biol Interact 102:1-16 otwiera się w nowej karcie
  70. Martínez A, Ikken Y, Cambero M, Marín M, Haz A, Casas C, Morales P (1999) Mutagenicity and cytotoxicity of fruits and veg- etables evaluated by the Ames test and 3-(4,5-dimethylthiazo- 2-yl)-2,5-diphenyltetrazolium bromide 1941(MTT) assay. Food Sci Technol Int 5:431-437 otwiera się w nowej karcie
  71. Khandoudia N, Portea P, Chtouroua S, Nesslanyb F, Marzinb D, Le Curieux F (2009) The presence of arginine may be a source of false positive results in the Ames test. Mutat Res 679:65-71 otwiera się w nowej karcie
  72. Priva MJ, Simmon VF, Mortelamans KE (1991) Bacterial muta- genicity testing of 49 food ingredients gives very few positive results. Mutat Res 260:321-329 otwiera się w nowej karcie
  73. Kassie F, Knasmüller S (2000) Genotoxic effects of allyl isothio- cyanate (AITC) and phenethyl isothiocyanate (PEITC). Chem- Biol Interact 127:163-180 otwiera się w nowej karcie
  74. Kassie F, Laky B, Nobis E, Kundi M, Knasmüller S (2001) Geno- toxic effects of methyl isothiocyanate. Mut Res 490:1-9 otwiera się w nowej karcie
  75. Hafidha RR, Abdulamir AS, Abu Bakard F, Jaliliane FA, Abasd F, Sekawifa Z (2013) Novel anticancer activity and anticancer mechanisms of Brassica oleracea L. var. capitata f. rubr. Eur J Integr Med 5:450-464 otwiera się w nowej karcie
  76. Hanschen F, Platz S, Mewis I, Schreiner M, Rohn S, Kroh L (2012) Thermally induced degradation of sulfur-containing ali- phatic glucosinolates in broccoli sprouts (Brassica oleracea var. italica) and model systems. J Agric Food Chem 60:2231-2241 otwiera się w nowej karcie
  77. Song L, Thornalley PJ (2007) Effect of storage, processing and cooking on glucosinolate content of Brassica vegetables. Food Chem Toxicol 45:216-224 otwiera się w nowej karcie
  78. Deng Q, Zinoviadou KG, Galanakis CM, Orlien V, Grimi N, Voro- biev E, Lebovka N, Barba FJ (2015) The effects of conventional and non-conventional processing on glucosinolates and its derived forms, isothiocyanates: extraction, degradation, and applications. Food Eng Rev 7:357-381 otwiera się w nowej karcie
  79. Barba FJ, Nikmaram N, Roohinejad S, Khelfa A, Zhu Z, Koubaa M (2016) Bioavailability of glucosinolates and their breakdown products: impact of processing. Front Nutr 3:24 otwiera się w nowej karcie
  80. Burow M, Bergner A, Gershenzon J, Wittstock U (2007) Glu- cosinolate hydrolysis in Lepidium sativum--identification of the thiocyanate-forming protein. Plant Mol Biol 63:49-61 otwiera się w nowej karcie
  81. de Torres ZM, Grant M, Bones A, Bennett R, Yin SL, Kissen R, Rossiter J (2005) Characterisation of recombinant epithiospecifier protein and its overexpression in Arabidopsis thaliana. Phytochem 66:859-867
  82. Foo H, Grönning L, Goodenough L, Bones A, Danielsen BE, Whiting D, Rossiter J (2000) Purifcation and characterisation of epithiospecifer protein from Brassica napus: enzymic intramo- lecular sulphur addition within alkenyl thiohydroximates derived from alkenyl glucosinolate hydrolysis. FEBS Lett 468:243-246 otwiera się w nowej karcie
  83. Hanschen FS, Klopsch R, Oliviero T, Schreiner M, Verkerk R, Dekker M (2017) Optimizing isothiocyanate formation dur- ing enzymatic glucosinolate breakdown by adjusting pH value, temperature and dilution in Brassica vegetables and Arabidopsis thaliana. Sci Rep 7:40807 otwiera się w nowej karcie
  84. Lfithy J, Carden B, Friederich U, Bachmann M (1984) Goi- trin-a nitrosatable constituent of plant foodstuffs. Experientia 40:452-453
  85. Zheng W, Xie D, Cerhan JR, Sellers TA, Wen W, Folsom AR (2001) Sulfotransferase 1A1 polymorphism, endogenous estrogen exposure, well-done meat intake, and breast cancer risk. Cancer Epidemiol Biomark Prev 10:89-94 otwiera się w nowej karcie
  86. Surh YJ (1998) Bioactivation of benzylic and allylic alcohols via sulfoconjugation. Chem Biol Interact 109:221-235 otwiera się w nowej karcie
  87. Glatt H, Meinl W (2004) Pharmacogenetics of soluble sulfotrans- ferases (SULTs). Arch Pharmacol 369:55-68 otwiera się w nowej karcie
Weryfikacja:
Politechnika Gdańska

wyświetlono 128 razy

Publikacje, które mogą cię zainteresować

Meta Tagi