Release and Transport of Toxic, Mobile Organic Compounds (Formaldehyde and Phenols) on an Arctic Glacier - Publikacja - MOST Wiedzy

Wyszukiwarka

Release and Transport of Toxic, Mobile Organic Compounds (Formaldehyde and Phenols) on an Arctic Glacier

Abstrakt

As a result of current deglaciation, the chemical cycles of many compounds, including toxic formaldehyde and phenols, are changing. However, the processes by which these chemicals are released have yet to be studied in situ. Here, we quantify fluxes of HCHO and phenols in a glacial catchment within one summer season, obtaining a net release from the glacier of 0.106 · 106 g formaldehyde and 0.255 · 106 g phenols, which can be interpreted as a combined result of summer deposition and glacier ice melt. Formaldehyde flux was shown to increase by 164% on a 250 m stretch of the stream flowing through an icing (an exposed former glacier bed area), whilst phenols have shown a smaller increase of 48%. Hence, the importance of glacial forefields in chemical cycle of toxic compounds is pronounced and requires further attention.

Cytowania

  • 4

    CrossRef

  • 4

    Web of Science

  • 0

    Scopus

Informacje szczegółowe

Kategoria:
Aktywność konferencyjna
Typ:
materiały konferencyjne indeksowane w Web of Science
Opublikowano w:
APCBEE Procedia strony 16 - 20,
ISSN: 2212-6708
Tytuł wydania:
5th International Conference on Environmental Science and Development (ICESD) strony 16 - 20
ISSN:
2210-7843
Język:
angielski
Rok wydania:
2014
Opis bibliograficzny:
Kozioł K., Ruman M., Kozak K., Polkowska Ż..: Release and Transport of Toxic, Mobile Organic Compounds (Formaldehyde and Phenols) on an Arctic Glacier, W: 5th International Conference on Environmental Science and Development (ICESD), 2014, ELSEVIER,.
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1016/j.apcbee.2014.10.006
Bibliografia: test
  1. Moholdt G., Nuth C., Hagen J. O., Kohler J. Recent elevation changes of Svalbard glaciers derived from ICESat laser altimetry. Remote Sens Environ 2010; 114, 11, 2756-2767. otwiera się w nowej karcie
  2. Gardner A. S., Moholdt G., Wouters B., Wolken G. J., Burgess D. O., Sharp M. J., Cogley J. G., Braun C., Labine C. Sharply increased mass loss from glaciers and ice caps in the Canadian Arctic Archipelago. Nature 2011; 473, 7347, 357-60. otwiera się w nowej karcie
  3. Stubbins A., Hood E., Raymond P. A., Aiken G. R., Sleighter R. L., Hernes P. J., Butman D., Hatcher P. G., Striegl R. G., Schuster P., Abdulla H. a. N., Vermilyea A. W., Scott D. T., Spencer R. G. M. Anthropogenic aerosols as a source of ancient dissolved organic matter in glaciers, Nat Geosci 2012; 5, 3, 198-201. otwiera się w nowej karcie
  4. Bogdal C., Schmid P., Zennegg M., Anselmetti F. S., Scheringer M., Hungerbühler K. Blast from the past: melting glaciers as a relevant source for persistent organic pollutants, Environ Sci Technol 2009; 43, 21, 8173-7. otwiera się w nowej karcie
  5. Wasi S., Tabrez S., Ahmad M. Toxicological effects of major environmental pollutants: an overview., Environ Monit Assess 2013; 185, 3, 2585-93. otwiera się w nowej karcie
  6. Grannas A. M., Jones A. E., Dibb J., Ammann M., Anastasio C., Beine H. J., et al. An overview of snow photochemistry: evidence, mechanisms and impacts, Atmos Chem Phys 2007; 7, 4329-73. otwiera się w nowej karcie
  7. Hutterli M. A. Sensitivity of hydrogen peroxide (H2O2) and formaldehyde (HCHO) preservation in snow to changing environmental conditions: Implications for ice core records, J Geophys Res 2003; 108, D1, 4023. otwiera się w nowej karcie
  8. Fellman J. B., Spencer R. G. M., Hernes P. J., Edwards R. T., D'Amore D. V., Hood E. The impact of glacier runoff on the biodegradability and biochemical composition of terrigenous dissolved organic matter in near-shore marine ecosystems, Mar Chem, 2010; 121, 1-4, 112-122. otwiera się w nowej karcie
  9. Campbell A. N., Campbell J. R. Concentrations, Total and Partial Vapor Pressures, Surface Tensions and Viscosities, in the Systems Phenol-Water and Phenol-Water-4% Succinic Acid, J Am Chem Soc 1937; 59, 12, 2481-2488. otwiera się w nowej karcie
  10. Hodson A. J., Anesio A. M., Tranter M., Fountain A., Osborn M., Priscu J. C., Laybourn-Parry J., Sattler B. Glacial Ecosystems, Ecol Monogr 2008; 78, 1, 41-67. otwiera się w nowej karcie
  11. Margesin R., Moertelmaier C., Mair J. Low-temperature biodegradation of petroleum hydrocarbons (n-alkanes, phenol, anthracene, pyrene) by four actinobacterial strains, Int Biodeter Biodegr 2013; 84, 185-191. otwiera się w nowej karcie
  12. Jacobi H.-W., Annor T., Quansah E. Investigation of the photochemical decomposition of nitrate, hydrogen peroxide, and formaldehyde in artificial snow, J Photoch Photobio A 2006; 179, 330-338. otwiera się w nowej karcie
  13. Cuppen H. M., van Dishoeck E. F., Herbst E., Tielens A. G. G. M. Microscopic simulation of methanol and formaldehyde ice formation in cold dense cores, Astron Astrophys 2009; 508, 1, 275-287. otwiera się w nowej karcie
  14. Srisuda S., Virote B. Adsorption of formaldehyde vapor by amine-functionalized mesoporous silica materials, J Environ Sci 2008; 20, 379-384. otwiera się w nowej karcie
  15. Banat F. A., Al-bashir B., Al-asheh S., Hayajneh O. Adsorption of phenol by bentonite, Environ Pollut 2000; 107, 391-398. otwiera się w nowej karcie
Weryfikacja:
Politechnika Gdańska

wyświetlono 18 razy

Publikacje, które mogą cię zainteresować

Meta Tagi