Robust Model Predictive Control for Autonomous Underwater Vehicle – Manipulator System with Fuzzy Compensator - Publikacja - MOST Wiedzy


Robust Model Predictive Control for Autonomous Underwater Vehicle – Manipulator System with Fuzzy Compensator


This paper proposes an improved Model Predictive Control (MPC) approach including a fuzzy compensator in order to track desired trajectories of autonomous Underwater Vehicle Manipulator Systems (UVMS). The tracking performance can be affected by robot dynamical model uncertainties and applied external disturbances. Nevertheless, the MPC as a known proficient nonlinear control approach should be improved by the uncertainty estimator and disturbance compensator particularly in high nonlinear circumstances such as underwater environment in which operation of the UVMS is extremely impressed by added nonlinear terms to its model. In this research, a new methodology is proposed to promote robustness virtue of MPC that is done by designing a fuzzy compensator based on the uncertainty and disturbance estimation in order to reduce or even omit undesired effects of these perturbations. The proposed control design is compared with conventional MPC control approach to confirm the superiority of the proposed approach in terms of robustness against uncertainties, guaranteed stability and precision.


  • 1 0


  • 9

    Web of Science

  • 9


Cytuj jako

Pełna treść

pobierz publikację
pobrano 28 razy
Wersja publikacji
Accepted albo Published Version
Creative Commons: CC-BY-NC-ND otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Publikacja w czasopiśmie
artykuły w czasopismach
Opublikowano w:
Polish Maritime Research nr 26, strony 163 - 171,
ISSN: 1233-2585
Rok wydania:
Opis bibliograficzny:
Nejatbakhsh Esfahani H.: Robust Model Predictive Control for Autonomous Underwater Vehicle – Manipulator System with Fuzzy Compensator// Polish Maritime Research -Vol. 26,iss. 2 (2019), s.163-171
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.2478/pomr-2019-0030
Bibliografia: test
  1. Islam S., Liu J.: Robust Sliding Mode Control for Robot Manipulators. IEEE Transactions on Industrial Electronics, vol. 58(6), pp. 2444-2453, 2011. otwiera się w nowej karcie
  2. F. Piltan and B. Sulaiman.: Review of Sliding Mode Control of Robotic Manipulator. World Sciences Journal, vol. 18(12), pp. 1855-1869, 2012.
  3. Esfahani H. N., Azimirad V., Eslami A., Asadi S.: An optimal sliding mode control based on immune- wavelet algorithm for underwater robotic manipulator. Proceedings of the 21st Iranian Conference on Electrical Engineering (ICEE). Mashhad, Iran, 2013. DOI: 10.1109/ IranianCEE.2013.6599587. otwiera się w nowej karcie
  4. Esfahani H. N., Azimirad V., Danesh M.: A time delay controller included terminal sliding mode and fuzzy gain tuning for underwater vehicle-manipulator systems. Ocean Engineering, vol. 107, pp. 97-107, 2015.
  5. Esfahani H. N., Azimirad V., Zakeri M.: Sliding Mode-PID Fuzzy controller with a new reaching mode for underwater robotic manipulators. Latin American Applied Research, vol. 44(3), pp. 253-258, 2014.
  6. Vivas A., Mosquera V.: Predictive functional control of a PUMA robot. Proceedings of the Conference on Automatic Control and System Engineering (ACSE 05), CICC. Cairo, Egypt, 2005. otwiera się w nowej karcie
  7. Incremona G. P., Ferrara A., Magni L.: Hierarchical Model Predictive/Sliding Mode Control of Nonlinear Constrained Uncertain Systems. Proceedings of the 5th IFAC Conference on Nonlinear Model Predictive Control (NMPC). Seville, Spain, 2015. DOI: 10.1016/j.ifacol.2015.11.268. otwiera się w nowej karcie
  8. Ghazaei Ardakani M., Olofsson B., Robertsson A., Johansson R.: Real-Time Trajectory Generation using Model Predictive Control. Proceedings of the IEEE International Conference on Automation Science and Engineering (CASE). Gothenburg, Sweden. pp. 942 -948, 2015. DOI: 10.1109/CoASE.2015.7294220. otwiera się w nowej karcie
  9. Wang Y., Chen W., Tomizuka M., Alsuwaidan B. N.: Model predictive sliding mode control: for constraint satisfaction and robustness. ASME 2013 Dynamic Systems and Control Conference, Palo Alto, California, USA. vol. 3, ISBN 978- 0-7918-5614-7, 2013. otwiera się w nowej karcie
  10. Fossen. T. I.: Marine Control Systems: Guidance, Navigation and Control of Ships, Rigs and Underwater Vehicle. Marine Cybernetics AS, Norway. pp. 570-579, ISBN 82-92356-00- 2, 2002.
  11. Krid. M, Benamar. F, and Lenain. R.: A new explicit dynamic path tracking controller using Generalized Predictive Control. International Journal of Control, Automation and Systems, Springer, vol. 15, Issue 1, pp. 303-314, 2017. otwiera się w nowej karcie
  12. Spong M.W., Hutchinson S., Vidyasagar M.: Robot Dynamics and Control. 2nd ed. John Wiley & Sons, Inc.; Hoboken, NJ, USA: 2004.
  13. Jasour A. M., Farrokhi M.: Path Tracking and Obstacle Avoidance for Redundant Robotic Arms Using Fuzzy NMPC. Proceedings of the American Control Conference, pp. 1353-1358. St. Louis, MO, USA, 2009. DOI: 10.1109/ ACC.2009.5160408. otwiera się w nowej karcie
  14. Rubus. T, Seweryn. K, and Sasiadek. J. Z.: Application of predictive control for manipulator mounted on a satellite. Archives of Control Sciences, vol. 28(LXIV), pp. 105-118, 2018. otwiera się w nowej karcie
  15. Lisowski. J.: Analysis of Methods of Determining the Safe Ship Trajectory. TRANSNAV-INTERNATIONAL JOURNAL ON MARINE NAVIGATION AND SAFETY OF SEA TRANSPORTATION, Vol. 10(2), pp. 223-228, JUN 2016. otwiera się w nowej karcie
  16. Lisowski. J.: Optimization-supported decision-making in the marine mechatronics systems. mechanics and material II. Book series: solid state phenomena, Vol. 210, pp. 215- 222, 2014. otwiera się w nowej karcie
  17. Tomera. M.: Ant colony optimization algorithm applied to ship steering control. KNOWLEDGE-BASED AND INTELLIGENT INFORMATION & ENGINEERING SYSTEMS 18TH ANNUAL CONFERENCE, KES-2014 otwiera się w nowej karcie
  18. Book Series: Procedia Computer Science, Vol. 35, pp. 83-92, 2014. otwiera się w nowej karcie
  19. Sun, Y. C., Cheah, C. C.: Adaptive set point control for autonomous underwater vehicles. In: Proceedings of IEEE Robotics Decision and Control Conference, Hawaii USA, 2, pp. 1262-1267,2003. CONTACT WITH THE AUTHOR Hossein Nejatbakhsh Esfahani e-mail: Gdansk University of Technology ul. G. Narutowicza 11/12 , 80-233 Gdansk Poland
Politechnika Gdańska

wyświetlono 45 razy

Publikacje, które mogą cię zainteresować

Meta Tagi