Model Predictive Super-Twisting Sliding Mode Control for An Autonomous Surface Vehicle - Publikacja - MOST Wiedzy

Wyszukiwarka

Model Predictive Super-Twisting Sliding Mode Control for An Autonomous Surface Vehicle

Abstrakt

This paper presents a new robust Model Predictive Control (MPC) algorithm for trajectory tracking of an Autonomous Surface Vehicle (ASV) in presence of the time-varying external disturbances including winds, waves and ocean currents as well as dynamical uncertainties. For fulfilling the robustness property, a sliding mode control-based procedure for designing of MPC and a super-twisting term are adopted. The MPC algorithm has been known as an effective approach for the implementation simplicity and its fast dynamic response. The proposed hybrid controller has been implemented in MATLAB / Simulink environment. The results for the combined Model Predictive Super-Twisting Sliding Mode Control (MP-STSMC) algorithm have shown that it significantly outperforms conventional MPC algorithm in terms of the transient response, robustness and steady state response and presents an effective chattering attenuation in comparison with the Super-Twisting Sliding Mode Control (STSMC) algorithm.

Cytowania

  • 7

    CrossRef

  • 7

    Web of Science

  • 8

    Scopus

Cytuj jako

Pełna treść

pobierz publikację
pobrano 115 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Creative Commons: CC-BY-NC-ND otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuły w czasopismach
Opublikowano w:
Polish Maritime Research nr 26, strony 163 - 171,
ISSN: 1233-2585
Język:
angielski
Rok wydania:
2019
Opis bibliograficzny:
Nejatbakhsh Esfahani H., Szłapczyński R.: Model Predictive Super-Twisting Sliding Mode Control for An Autonomous Surface Vehicle// Polish Maritime Research -Vol. 26,iss. 3 (2019), s.163-171
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.2478/pomr-2019-0057
Bibliografia: test
  1. Esfahani, H. N., Azimirad. V., Eslami. A., Asadi. S.): An optimal sliding mode control based on immune-wavelet algorithm for underwater robotic manipulator. Proceedings of the 21st Iranian Conference on Electrical Engineering (ICEE), Mashhad, Iran, 2013. otwiera się w nowej karcie
  2. Esfahani, H. N., Azimirad, V., Danesh, M.: A time delay controller included terminal sliding mode and fuzzy gain tuning for underwater vehicle-manipulator systems. Ocean Engineering, Vol. 107, (2015) pp. 97-107.
  3. Esfahani, H. N., Azimirad, V., Zakeri, M.: Sliding Mode-PID Fuzzy controller with a new reaching mode for underwater robotic manipulators. Latin American Applied Research, vol. 44(3), (2014), pp. 253-258.
  4. Liu C., Zheng H., Negenborn R.R., Chu X., Wang L.: Trajectory tracking control for underactuated surface vessels based on nonlinear Model Predictive Control. In: Corman F., Voß S., Negenborn R. (eds) Computational Logistics. ICCL 2015. Lecture Notes in Computer Science, vol 9335, (2015), pp. 166-180. Springer, Cham. (Proceedings of the 6th International Conference, ICCL 2015, Delft, The Netherlands). otwiera się w nowej karcie
  5. Liu, J., Luo, J., Cui, J., Peng, Y.: Trajectory Tracking Control of Underactuated USV with Model Perturbation and External Interference. Procedings of the 3rd International Conference on Mechanics and Mechatronics Research (ICMMR 2016). Chongqing, China , 2016. DOI: 10.1051/ matecconf/20167709009. otwiera się w nowej karcie
  6. Wang, W., Mateos, L.A., Park, S., Leoni, P., Gheneti, B., Duarte, F., Ratti, C., Rus, D.: Design , Modeling , and Nonlinear Model Predictive Tracking Control of a Novel Autonomous Surface Vehicle. Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pp. 6189-6196. Brisbane, Australia, 2018. DOI: 10.1109/ICRA.2018.8460632. otwiera się w nowej karcie
  7. Zheng, H., Negenborn, R.R., Lodewijks, G.: Trajectory tracking of autonomous vessels using model predictive control. IFAC Proceedings Volumes. vol. 19, (2014) no. 3, pp. 8812-8818. (Procedings of the 19th IFAC World Congress, Cape Town, South Africa, August 24-29). DOI: 10.3182/20140824-6-ZA-1003.00767. otwiera się w nowej karcie
  8. Abdelaal, M., Fr, M., Hahn, A.: Nonlinear Model Predictive Control for trajectory tracking and collision avoidance of underactuated vessels with disturbances. Ocean Eng., Vol. 160, (2018), pp. 168-180. otwiera się w nowej karcie
  9. Yi, B., Qiao, L., Zhang, W.: Two-time scale path following of underactuated marine surface vessels : Design and stability analysis using singular perturbation methods. Ocean Eng., Vol. 124, (2016) , pp. 287-297. otwiera się w nowej karcie
  10. Valenciaga, F.: A second order sliding mode path following control for autonomous surface vessels. Asian Journal Control, vol. 16(5), (2014), pp. 1515-1521. otwiera się w nowej karcie
  11. Tanakitkorn, K., Phillips, A.B., Wilson, P.A., Turnock, S.R. : Sliding mode heading control of an overactuated hover- capable autonomous underwater vehicle with experimental verification. Journal of Field Robotics, vol. 35(3), (2017), pp. 396-415. otwiera się w nowej karcie
  12. Hung, N.T., Rego, F., Crasta, N., Pascoal, A.M.: Input- Constrained Path Following for Autonomous Marine Vehicles with a Global Region of Attraction. IFAC-PapersOnLine, vol. 51(29), pp. 348-353. (Proceedings of the 11th IFAC Conference on Control Applications in Marine Systems, Robotics, and Vehicles, CAMS-2018. Opatija, Croatia, 2018. otwiera się w nowej karcie
  13. Jamalzade, M.S., Koofigar, H.R., Ataei, M.: Adaptive fuzzy control for a class of constrained nonlinear systems with application to a surface vessel. Journal of Theoretical and Applied Mechanics, vol. 54(3), (2016), pp. 987-1000. otwiera się w nowej karcie
  14. Fossen, T.I.: Handbook of Marine Craft Hydrodynamics and Motion Control, John Wiley & Sons, Ltd., 2011. otwiera się w nowej karcie
  15. Fu, M., Yu, L.: Finite-time extended state observer-based distributed formation control for marine surface vehicles with input saturation and disturbances. Ocean Eng., Vol. 159, (2018) , pp. 219-227. otwiera się w nowej karcie
  16. Incremona, G. P., Ferrara, A., Magni, L.: Hierarchical Model Predictive/Sliding Mode Control of Nonlinear Constrained Uncertain Systems. IFAC-PapersOnLine, vol. 48(23), (2015) , pp. 102-109. (Proceedings of the 5th IFAC Conference on Nonlinear Model Predictive Control, NMPC-15. Seville, Spain). otwiera się w nowej karcie
  17. Esfahani, H. N: Robust Model Predictive Control for Autonomous Underwater Vehicle-Manipulator System with Fuzzy Compensator. Polish Maritime Research (forthcoming), 2019. 10.2478/pomr-2019-00139. otwiera się w nowej karcie
  18. Witkowska, A, Smierzchalski, R.: Adaptive dynamic control allocation for dynamic positioning of marine vessel based on backstepping method and sequential quadratic programming. Ocean Engineering, Vol. 163, (2018) , pp. 570-582. otwiera się w nowej karcie
  19. Witkowska, A, Smierzchalski, R.: Adaptive Backstepping Tracking Control for an over-Actuated DP Marine Vessel with Inertia Uncertainties. International Journal of Applied Mathematics and Computer Science , Vol. 28(4), (2018), pp. 679-693. otwiera się w nowej karcie
  20. Lisowski, J.: Analysis of Methods of Determining the Safe Ship Trajectory. TRANSNAV-International Journal On Marine Navigation And Safety Of Sea Transportation, Vol. 10(2), (2016) , pp. 223-228. otwiera się w nowej karcie
  21. Lisowski, J.: Optimization-supported decision-making in the marine mechatronics systems. Solid State Phenomena, vol. 210, (2014), pp. 215-222. otwiera się w nowej karcie
  22. Tomera, M.: Ant colony optimization algorithm applied to ship steering control. Procedia Computer Science, vol. 35, (2014) , pp. 83-92. (Proceedings of the Knowledge-Based and Intelligent Information & Engineering Systems, 18th Annual Conference, KES-2014. Gdynia, Poland). otwiera się w nowej karcie
  23. Fang, Y.: Global output feedback control of dynamically positioned surface vessels : an adaptive control approach. Mechatronics, Vol. 14, (2004) , pp. 341-356. DOI: 10.1016/ S0957-4158(03)00064-3. otwiera się w nowej karcie
Źródła finansowania:
  • Działalność statusowa
Weryfikacja:
Politechnika Gdańska

wyświetlono 167 razy

Publikacje, które mogą cię zainteresować

Meta Tagi