Shales Leaching Modelling for Prediction of Flowback Fluid Composition - Publikacja - MOST Wiedzy

Wyszukiwarka

Shales Leaching Modelling for Prediction of Flowback Fluid Composition

Abstrakt

The object of the paper is the prediction of flowback fluid composition at a laboratory scale, for which a new approach is described. The authors define leaching as a flowback fluid generation related to the shale processing. In the first step shale rock was characterized using X-ray fluorescence spectroscopy, X-ray diractometry and laboratory analysis. It was proven that shale rock samples taken from the selected sections of horizontal well are heterogeneous. Therefore, the need to carry a wide range of investigations for highly diversified samples occurred. A series of leaching tests have been conducted. The extracts were analyzed after leaching to determine Total Organic Carbon and selected elements. For the results analysis significant parameters were chosen, and regression equations describing the influence of rocks and fracturing fluid parameters on the flowback fluid composition were proposed. Obtained models are described by high values of determination coecients with confidence coecients above 0.99 and a relatively low standard deviation. It was proven that the proposed approach regarding shale leaching can be properly described using shale models at a laboratory scale, however scaling up requires further investigations.

Cytowania

  • 0

    CrossRef

  • 0

    Web of Science

  • 0

    Scopus

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuł w czasopiśmie wyróżnionym w JCR
Opublikowano w:
ENERGIES nr 12, strony 1 - 21,
ISSN: 1996-1073
Język:
angielski
Rok wydania:
2019
Opis bibliograficzny:
Rogala A., Kucharska K., Hupka J.: Shales Leaching Modelling for Prediction of Flowback Fluid Composition// ENERGIES. -Vol. 12, iss. 1404 (2019), s.1-21
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.3390/en12071404
Weryfikacja:
Politechnika Gdańska

wyświetlono 13 razy

Publikacje, które mogą cię zainteresować

Meta Tagi