Shales Leaching Modelling for Prediction of Flowback Fluid Composition - Publikacja - MOST Wiedzy

Wyszukiwarka

Shales Leaching Modelling for Prediction of Flowback Fluid Composition

Abstrakt

The object of the paper is the prediction of flowback fluid composition at a laboratory scale, for which a new approach is described. The authors define leaching as a flowback fluid generation related to the shale processing. In the first step shale rock was characterized using X-ray fluorescence spectroscopy, X-ray diractometry and laboratory analysis. It was proven that shale rock samples taken from the selected sections of horizontal well are heterogeneous. Therefore, the need to carry a wide range of investigations for highly diversified samples occurred. A series of leaching tests have been conducted. The extracts were analyzed after leaching to determine Total Organic Carbon and selected elements. For the results analysis significant parameters were chosen, and regression equations describing the influence of rocks and fracturing fluid parameters on the flowback fluid composition were proposed. Obtained models are described by high values of determination coecients with confidence coecients above 0.99 and a relatively low standard deviation. It was proven that the proposed approach regarding shale leaching can be properly described using shale models at a laboratory scale, however scaling up requires further investigations.

Cytowania

  • 1

    CrossRef

  • 0

    Web of Science

  • 1

    Scopus

Cytuj jako

Pełna treść

pobierz publikację
pobrano 7 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Creative Commons: CC-BY otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuł w czasopiśmie wyróżnionym w JCR
Opublikowano w:
ENERGIES nr 12, strony 1 - 21,
ISSN: 1996-1073
Język:
angielski
Rok wydania:
2019
Opis bibliograficzny:
Rogala A., Kucharska K., Hupka J.: Shales Leaching Modelling for Prediction of Flowback Fluid Composition// ENERGIES. -Vol. 12, iss. 1404 (2019), s.1-21
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.3390/en12071404
Bibliografia: test
  1. Dayal, A.M. Shale. In Shale Gas: Exploration and Environmental and Economic Impacts; Elsevier Science: Amsterdam, Holand, 2017; ISBN 9780128095355. otwiera się w nowej karcie
  2. Singh, K.; Holditch, S.A.; Ayers, W.B. Basin Analog Investigations Answer Characterization Challenges of Unconventional Gas Potential in Frontier Basins. J. Energy Resour. Technol. 2008, 130. [CrossRef] otwiera się w nowej karcie
  3. Chopra, S.; Solutions, A.S.; Kumar, R.; Marfurt, K.J. Current Workflows for Shale Gas Reservoir Characterization. In Proceedings of the Unconventional Resources Technology Conference, Denver, CO, USA, 12-14 August 2013. [CrossRef] otwiera się w nowej karcie
  4. Chermak, J.A.; Schreiber, M.E. Mineralogy and trace element geochemistry of gas shales in the United States: Environmental implications. Int. J. Coal Geol. 2014, 126, 32-44. [CrossRef] otwiera się w nowej karcie
  5. Liu, J.; Yao, Y.; Elsworth, D.; Liu, D.; Cai, Y.; Dong, L. Vertical heterogeneity of the shale reservoir in the lower silurian longmaxi formation: Analogy between the southeastern and Northeastern Sichuan Basin, SW China. Minerals 2017, 7, 151. [CrossRef] otwiera się w nowej karcie
  6. Barnhoorn, A.; Houben, M.E.; Lie-A-Fat, J.; Ravestein, T.; Drury, M. Variations in petrophysical properties of shales along a stratigraphic section in the Whitby mudstone (UK). In Proceedings of the EGU General Assembly 2015, Vienna, Austria, 12-17 April 2015.
  7. Chen, L.; Lu, Y.; Jiang, S.; Li, J.; Guo, T.; Luo, C. Heterogeneity of the lower silurian longmaxi marine shale in the southeast sichuan basin of China. Mar. Pet. Geol. 2015, 65, 232-246. [CrossRef] otwiera się w nowej karcie
  8. Rogala, A.; Krzysiek, J.; Bernaciak, M.; Hupka, J. Non-aqueous fracturing technologies for shale gas recovery. Physicochem. Probl. Miner. Process. 2013, 49, 313-322.
  9. Rogala, A.; Ksiezniak, K.; Krzysiek, J.; Hupka, J. Carbon dioxide sequestration during shale gas recovery. Physicochem. Probl. Miner. Process. 2014, 50, 681-692.
  10. Howard, G.C.; FAST, C.R. Hydraulic Fracturing; otwiera się w nowej karcie
  11. Henry L. Doherty Memorial Fund of AIME: New York, NY, USA, 1970; Volume 2, ISBN 0895202018.
  12. Tao, H.; Zhang, L.; Liu, Q.; Deng, Q.; Luo, M.; Zhao, Y. An Analytical Flow Model for Heterogeneous Multi-Fractured Systems in Shale Gas Reservoirs. Energies 2018, 11, 3422. [CrossRef] otwiera się w nowej karcie
  13. Economides, M.J.; Martin, T. Modern Fracturing-Enhancing Natural Gas Production; Energy Tribune Publishing: Houston, TX, USA, 2007; 509p.
  14. Gandossi, L. An Overview of Hydraulic Fracturing and Other Formation Stimulation Technologies for Shale Gas Production; Joint Research Centre: Mercier, Luxembourg, 2015; ISBN 9789279347290.
  15. Mader, D. Hydraulic Proppant Fracturing and Gravel Packing; Elsevier Science: Amsterdam, Holand, 1989; ISBN 9780444873521. otwiera się w nowej karcie
  16. Ksiezniak, K.; Rogala, A.; Hupka, J. Wettability of shale rock as an indicator of fracturing fluid composition. Physicochem. Probl. Miner. Process. 2015, 51, 315-323.
  17. Albrycht, I.; Boy, K.; Jankowski, J.M. Gaz Niekonwencjonalny-Szansa dla Polski i Europy? Analiza i Rekomendacje; otwiera się w nowej karcie
  18. Instytut Kościuszki: Kraków, Poland, 2011; ISBN 9788393109340.
  19. Arthur, J.D.; Bohm, B.K.; Cornue, D. Environmental Considerations of Modern Shale Gas Development. In Proceedings of the SPE Annual Technical Conference and Exhibition, San Antonio, TX, USA, 9-11 October 2009. otwiera się w nowej karcie
  20. Hayes, T.; Severin, B.F. Barnett and Appalachian Shale Water Management and Reuse Technologies; Project Report by Gas Technology Institute Research Partners toSecure Energy for America; Publications Office of the European Union: Mercier, Luxembourg, 2012; pp. 1-10. otwiera się w nowej karcie
  21. Boschee, P. Produced and Flowback Water Recycling and Reuse: Economics, Limitations, and Technology. Oil Gas Facil. 2014, 3, 16-21. [CrossRef] otwiera się w nowej karcie
  22. Abualfaraj, N.; Gurian, P.L.; Olson, M.S. Assessing residential exposure risk from spills of flowback water from Marcellus shale hydraulic fracturing activity. Int. J. Environ. Res. Public Health 2018, 11, 15. [CrossRef] otwiera się w nowej karcie
  23. Zhou, J.; Zhang, L.; Braun, A.; Han, Z. Investigation of processes of interaction between hydraulic and natural fractures by PFC modeling comparing against laboratory experiments and analytical models. Energies 2017, 10, 1001. [CrossRef] otwiera się w nowej karcie
  24. Clarkson, C.R.; Williams-Kovacs, J. Modeling Two-Phase Flowback of Multifractured Horizontal Wells Completed in Shale. SPE J. 2013, 18. [CrossRef] otwiera się w nowej karcie
  25. Williams-Kovacs, J.D.; Clarkson, C.R. A modified approach for modeling two-phase flowback from multi-fractured horizontal shale gas wells. J. Nat. Gas Sci. Eng. 2016, 30, 127-147. [CrossRef] otwiera się w nowej karcie
  26. Clarkson, C.R.; Haghshenas, B.; Ghanizadeh, A.; Qanbari, F.; Williams-Kovacs, J.D.; Riazi, N.; Debuhr, C.; Deglint, H.J. Nanopores to megafractures: Current challenges and methods for shale gas reservoir and hydraulic fracture characterization. J. Nat. Gas Sci. Eng. 2016. [CrossRef] otwiera się w nowej karcie
  27. Jia, P.; Cheng, L.; Clarkson, C.R.; Huang, S.; Wu, Y.; Williams-Kovacs, J.D. A novel method for interpreting water data during flowback and early-time production of multi-fractured horizontal wells in shale reservoirs. Int. J. Coal Geol. 2018, 200, 186-196. [CrossRef] otwiera się w nowej karcie
  28. Cao, P.; Liu, J.; Leong, Y.K. A multiscale-multiphase simulation model for the evaluation of shale gas recovery coupled the effect of water flowback. Fuel 2017, 199, 191-205. [CrossRef] otwiera się w nowej karcie
  29. Bai, B.; Elgmati, M.; Zhang, H.; Wei, M. Rock characterization of Fayetteville shale gas plays. Fuel 2013, 105, 642-652. [CrossRef] otwiera się w nowej karcie
  30. Zhang, H.Y.; Gu, D.H.; Zhu, M.; He, S.L.; Men, C.Q.; Luan, G.H.; Mo, S.Y. Optimization of Fracturing Fluid Flowback Based on Fluid Mechanics for Multilayer Fractured Tight Reservoir. Adv. Mater. Res. 2014, 886, 448-451. [CrossRef] otwiera się w nowej karcie
  31. Michel, G.; Civan, F.; Sigal, R.; Devegowda, D. Proper Simulation of Fracturing-Fluid Flowback from Hydraulically-Fractured Shale-Gas Wells Delayed by Non-Equilibrium Capillary Effects. In Proceedings of the Unconventional Resources Technology Conference, Denver, CO, USA, 12-14 August 2013. otwiera się w nowej karcie
  32. Moray, L.; Holdaway, K.R. Fluid flowback prediction. U.S. Patent US20150112597A1, 23 April 2015. otwiera się w nowej karcie
  33. Jurus, W.J.; Whitson, C.H.; Golan, M. Modeling Water Flow in Hydraulically-Fractured Shale Wells. In Proceedings of the SPE Annual Technical Conference and Exhibition, New Orleans, LA, USA, 30 otwiera się w nowej karcie
  34. Abdulelah, H.; Mahmood, S.; Al-Hajri, S.; Hakimi, M.; Padmanabhan, E. Retention of Hydraulic Fracturing Water in Shale: The Influence of Anionic Surfactant. Energies 2018, 11, 3342. [CrossRef] otwiera się w nowej karcie
  35. He, C.; Li, M.; Liu, W.; Barbot, E.; Vidic, R.D. Kinetics and Equilibrium of Barium and Strontium Sulfate Formation in Marcellus Shale Flowback Water. J. Environ. Eng. 2014, 140. [CrossRef] otwiera się w nowej karcie
  36. Barbot, E.; Vidic, N.S.; Gregory, K.B.; Vidic, R.D. Spatial and temporal correlation of water quality parameters of produced waters from Devonian-age shale following hydraulic fracturing. Environ. Sci. Technol. 2013, 47, 2562-2569. [CrossRef] [PubMed] otwiera się w nowej karcie
  37. Gdanski, R.; Weaver, J.; Slabaugh, B. A New Model for Matching Fracturing Fluid Flowback Composition. In Proceedings of the SPE Hydraulic Fracturing Technology Conference, College Station, TX, USA, 29-31 January 2007. otwiera się w nowej karcie
  38. Liu, X.; Ortoleva, P. A General-Purpose, Geochemical Reservoir Simulator. Soc. Pet. Eng. 1996. [CrossRef] otwiera się w nowej karcie
  39. Balashov, V.N.; Engelder, T.; Gu, X.; Fantle, M.S.; Brantley, S.L. A model describing flowback chemistry changes with time after Marcellus Shale hydraulic fracturing. Am. Assoc. Pet. Geol. Bull. 2015, 99, 143-154. [CrossRef] otwiera się w nowej karcie
  40. Kalbe, U.; Berger, W.; Eckardt, J.; Simon, F.G. Evaluation of leaching and extraction procedures for soil and waste. Waste Manag. 2008, 28, 1027-1038. [CrossRef] [PubMed] otwiera się w nowej karcie
  41. Fällman, A.M.; Aurell, B. Leaching tests for environmental assessment of inorganic substances in wastes, Sweden. Sci. Total Environ. 1996, 178, 71-84. [CrossRef] otwiera się w nowej karcie
  42. Mahmoudkhani, M.; Wilewska-Bien, M.; Steenari, B.M.; Theliander, H. Evaluating two test methods used for characterizing leaching properties. Waste Manag. 2008, 28, 133-141. [CrossRef] otwiera się w nowej karcie
  43. Quevauviller, P.; Van der Sloot, H.A.; Ure, A.; Muntau, H.; Gomez, A.; Rauret, G. Conclusions of the workshop: Harmonization of leaching/extraction tests for environmental risk assessment. Sci. Total Environ. 1996, 178, 133-139. [CrossRef] otwiera się w nowej karcie
  44. Organization for Economic Cooperation and Development. OECD Guidelines for Testing of Chemicals; OECD Publishing: Paris, France, 2000; ISBN 9108026995001. otwiera się w nowej karcie
  45. RStudio Team. RStudio: Integrated Development for R; otwiera się w nowej karcie
  46. RStudio, Inc.: Boston, MA, USA, 2015. Available online: http://www.rstudio.com/ (accessed on 1 April 2019). otwiera się w nowej karcie
  47. © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). otwiera się w nowej karcie
Weryfikacja:
Politechnika Gdańska

wyświetlono 141 razy

Publikacje, które mogą cię zainteresować

Meta Tagi