Static and Dynamic Mechanical Properties of 3D Printed ABS as a Function of Raster Angle - Publikacja - MOST Wiedzy

Wyszukiwarka

Static and Dynamic Mechanical Properties of 3D Printed ABS as a Function of Raster Angle

Abstrakt

Due to the rapid growth of 3D printing popularity, including fused deposition modeling (FDM), as one of the most common technologies, the proper understanding of the process and influence of its parameters on resulting products is crucial for its development. One of the most crucial parameters of FDM printing is the raster angle and mutual arrangement of the following filament layers. Presented research work aims to evaluate different raster angles (45°, 55°, 55’°, 60° and 90°) on the static, as well as rarely investigated, dynamic mechanical properties of 3D printed acrylonitrile butadiene styrene (ABS) materials. Configuration named 55’° was based on the optimal winding angle in filament-wound pipes, which provides them exceptional mechanical performance and durability. Also in the case of 3D printed samples, it resulted in the best impact strength, comparing to other raster angles, despite relatively weaker tensile performance. Interestingly, all 3D printed samples showed surprisingly high values of impact strength considering their calculated brittleness, which provides new insights into understanding the mechanical performance of 3D printed structures. Simultaneously, it proves that, despite extensive research works related to FDM technology, there is still a lot of investigation required for a proper understanding of this process.

Cytowania

  • 2 5

    CrossRef

  • 1 8

    Web of Science

  • 1 9

    Scopus

Autorzy (4)

Cytuj jako

Pełna treść

pobierz publikację
pobrano 31 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Creative Commons: CC-BY otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuły w czasopismach
Opublikowano w:
Materials nr 13, strony 1 - 12,
ISSN: 1996-1944
Język:
angielski
Rok wydania:
2020
Opis bibliograficzny:
Galeja M., Hejna A., Kosmela P., Kulawik A.: Static and Dynamic Mechanical Properties of 3D Printed ABS as a Function of Raster Angle// Materials -Vol. 13,iss. 2 (2020), s.1-12
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.3390/ma13020297
Bibliografia: test
  1. Fafenrot, S.; Grimmelsmann, N.; Wortmann, M.; Ehrmann, A. Three-dimensional (3D) printing of polymer-metal hybrid materials by fused deposition modeling. Materials 2017, 10, 1199. [CrossRef] [PubMed] otwiera się w nowej karcie
  2. Galeta, T.; Raos, P.; Stojšić, J.; Pakši, I. Influence of structure on mechanical properties of 3D printed objects. Procedia Eng. 2016, 149, 100-104. [CrossRef] otwiera się w nowej karcie
  3. Travieso-Rodriguez, J.A.; Jerez-Mesa, R.; Llumà, J.; Traver-Ramos, O.; Gomez-Gras, G.; Roa Rovira, J.J. Mechanical properties of 3D-printing polylactic acid parts subjected to bending stress and fatigue testing. Materials 2019, 12, 3859. [CrossRef] [PubMed] otwiera się w nowej karcie
  4. Kim, H.; Park, E.; Kim, S.; Park, B.; Kim, N.; Lee, S. Experimental study on mechanical properties of single- and dual-material 3D printed products. Procedia Manuf. 2017, 10, 887-897. [CrossRef] otwiera się w nowej karcie
  5. Wang, X.; Jiang, M.; Zhou, Z.; Gou, J.; Hui, D. 3D printing of polymer matrix composites: A review and prospective. Compos. Part B Eng. 2017, 110, 442-458. [CrossRef] Materials 2020, 13, 297 otwiera się w nowej karcie
  6. Wang, Y.T.; Yeh, Y.T. Effect of print angle on mechanical properties of FDM 3D structures printed with POM material. In Innovative Design and Development Practices in Aerospace and Automotive Engineering; otwiera się w nowej karcie
  7. Bajpai, R.P., Chandrasekhar, U., Eds.; Springer: Singapore, 2017; pp. 157-167. [CrossRef] otwiera się w nowej karcie
  8. Farbman, D.; McCoy, C. Materials testing of 3D printed ABS and PLA samples to guide mechanical design. In Proceedings of the ASME 2016 11th International Manufacturing Science and Engineering Conference, Blacksburg, VA, USA, 27 June-1 July 2016. [CrossRef] otwiera się w nowej karcie
  9. Somireddy, M.; Czekanski, A. Mechanical characterization of additively manufactured parts by FE modeling of mesostructure mechanical characterization of additively manufactured parts by FE modeling of mesostructure. J. Manuf. Mater. Process. 2017, 12, 18. [CrossRef] otwiera się w nowej karcie
  10. Quanjin, M.; Rejab, M.R.M.; Kaige, J.; Idris, M.S.; Harith, M.N. Filament winding technique, experiment and simulation analysis on tubular structure. IOP Conf. Ser. Mater. Sci. Eng. 2018, 342, 012029. [CrossRef] otwiera się w nowej karcie
  11. Reza Khoshravan Azar, M.; Emami Satellou, A.A.; Shishesaz, M.; Salavati, B. Calculating the optimum angle of filament-wound pipes in natural gas transmission pipelines using approximation methods. J. Press. Vessel Technol. 2013, 135, 021702. [CrossRef] otwiera się w nowej karcie
  12. Arikan, H. Failure analysis of (±55 • ) 3 filament wound composite pipes with an inclined surface crack under static internal pressure. Compos. Struct. 2010, 92, 182-187. [CrossRef] otwiera się w nowej karcie
  13. Popescu, D.; Zapciu, A.; Amza, C.; Baciu, F.; Marinescu, R. FDM process parameters influence over the mechanical properties of polymer specimens: A review. Polym. Test. 2018, 69, 157-166. [CrossRef] otwiera się w nowej karcie
  14. Rousseau, J.; Perreux, D.; Verdière, N. The influence of winding patterns on the damage behaviour of filament-wound pipes. Compos. Sci. Technol. 1999, 59, 1439-1449. [CrossRef] otwiera się w nowej karcie
  15. Rajpurohit, S.R.; Dave, H.K. Effect of process parameters on tensile strength of FDM printed PLA part. Rapid Prototyp. J. 2018, 24, 1317-1324. [CrossRef] otwiera się w nowej karcie
  16. Wu, W.; Geng, P.; Li, G.; Zhao, D.; Zhang, H.; Zhao, J. Influence of layer thickness and raster angle on the mechanical properties of 3D-printed PEEK and a comparative mechanical study between PEEK and ABS. Materials 2015, 8, 5834-5846. [CrossRef] [PubMed] otwiera się w nowej karcie
  17. Villacres, J.; Nobes, D.; Ayranci, C. Additive manufacturing of shape memory polymers: effects of print orientation and infill percentage on mechanical properties. Rapid Prototyp. J. 2018, 24, 744-751. [CrossRef] otwiera się w nowej karcie
  18. Hamed, A.F.; Khalid, Y.A.; Sapuan, S.M.; Hamdan, M.M.; Younis, T.S.; Sahari, B.B. Effects of winding angles on the strength of filament wound composite tubes subjected to different loading modes. Polym. Polym. Compos. 2007, 15, 199-206. [CrossRef] otwiera się w nowej karcie
  19. Naseva, S.; Srebrenkoska, V.; Risteska, S.; Stefanovska, M.; Srebrenkoska, S. Mechanical properties of filament wound pipes: Effects of winding angles. Qual. Life 2015, 6, 10-15. [CrossRef] otwiera się w nowej karcie
  20. McKeen, L.W. Introduction to plastics and elastomers. In Effect of Temperature and Other Factors on Plastics and Elastomers (Second Edition); otwiera się w nowej karcie
  21. McKeen, L.W., Ed.; William Andrew Publisher: Norwich, NY, USA, 2008; pp. 1-39. [CrossRef] otwiera się w nowej karcie
  22. Brostow, W.; Hagg Lobland, H.E.; Narkis, M. Sliding wear, viscoelasticity, and brittleness of polymers. J. Mater. Res. 2006, 21, 2422-2428. [CrossRef] otwiera się w nowej karcie
  23. Fernandes, C.; Pontes, A.J.; Viana, J.C.; Gaspar-Cunha, A. Modeling and optimization of the injection-molding process: A review. Adv. Polym. Technol. 2016, 37, 429-449. [CrossRef] otwiera się w nowej karcie
  24. Fang, H.; Li, B.; Wang, F.; Wang, Y.; Cui, C. The mechanical behaviour of drainage pipeline under traffic load before and after polymer grouting trenchless repairing. Tunn. Undergr. Space Technol. 2018, 74, 185-194. [CrossRef] otwiera się w nowej karcie
  25. Álvarez, K.; Lagos, R.F.; Aizpun, M. Investigating the influence of infill percentage on the mechanical properties of fused deposition modelled ABS parts. Ingeniería Investig. 2016, 36, 110-116. [CrossRef] otwiera się w nowej karcie
  26. Richter, C.; Schmülling, S.; Ehrmann, A.; Finsterbusch, K. FDM printing of 3D forms with embedded fibrous materials. Appl. Mech. Mater. 2015, 2015, 961-969. [CrossRef] otwiera się w nowej karcie
  27. Matsuoka, S. Thermodynamic aspects of brittleness in glassy polymers. In Toughness and Brittleness of Plastics; otwiera się w nowej karcie
  28. Deanin, R.D., Crugnola, A.M., Eds.; American Chemical Society: Washington, DC, USA, 1976; pp. 3-7. [CrossRef] otwiera się w nowej karcie
  29. Menges, G.; Boden, H.E. Deformation and failure of thermoplastics on impact. In Failure of Plastics; otwiera się w nowej karcie
  30. Brostow, W., Corneliussen, R.D., Eds.; Hanser Publishers: Munich, Germany, 1986; p. 179.
  31. Brostow, W.; Hagg Lobland, H.E.; Khoja, S. Brittleness and toughness of polymers and other materials. Mater. Lett. 2015, 159, 478-480. [CrossRef] otwiera się w nowej karcie
  32. Caminero, M.A.; Chacón, J.M.; García-Moreno, I.; Reverte, J.M. Interlaminar bonding performance of 3D printed continuous fibre reinforced thermoplastic composites using fused deposition modelling. Polym. Test. 2018, 68, 415-423. [CrossRef] otwiera się w nowej karcie
  33. Harding, J.; Wood, E.O.; Campbell, J.D. Tensile testing of materials at impact rates of strain. J. Mech. Eng. Sci. 1960, 2, 88-96. [CrossRef] otwiera się w nowej karcie
  34. Brostow, W.; Hagg Lobland, H.E. Brittleness of materials: implications for composites and a relation to impact strength. J. Mater. Sci. 2009, 45, 242-250. [CrossRef] otwiera się w nowej karcie
  35. Portella, E.H.; Romanzini, D.; Angrizani, C.C.; Amico, S.C.; Zattera, A.J. Influence of stacking sequence on the mechanical and dynamic mechanical properties of cotton/glass fiber reinforced polyester composites. Mater. Res. 2016, 19, 542-547. [CrossRef] otwiera się w nowej karcie
  36. Xing, J.; Geng, P.; Yang, T. Stress and deformation of multiple winding angle hybrid filament-wound thick cylinder under axial loading and internal and external pressure. Compos. Struct. 2015, 131, 868-877. otwiera się w nowej karcie
  37. © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). otwiera się w nowej karcie
Weryfikacja:
Politechnika Gdańska

wyświetlono 85 razy

Publikacje, które mogą cię zainteresować

Meta Tagi