Surface effects of network materials based on strain gradient homogenized media - Publikacja - MOST Wiedzy

Wyszukiwarka

Surface effects of network materials based on strain gradient homogenized media

Abstrakt

The asymptotic homogenization of periodic network materials modeled as beam networks is pursued in this contribution, accounting for surface effects arising from the presence of a thin coating on the surface of the structural beam elements of the network. Cauchy and second gradient effective continua are considered and enhanced by the consideration of surface effects. The asymptotic homogenization technique is here extended to account for the additional surface properties, which emerge in the asymptotic expansion of the effective stress and hyperstress tensors versus the small scale parameters and the additional small parameters related to surface effects. Based on the elaboration of small dimensionless parameters of geometrical or mechanical nature reflecting the different length scales, we construct different models in which the importance of surface effects is dictated by specific choice of the scaling relations between the introduced small parameters. The effective moduli reflect the introduced surface properties. We show in particular that surface effects may become dominant for specific choices of the scaling laws of the introduced small parameters. Examples of networks are given for each class of the considered effective constitutive models to illustrate the proposed general framework.

Cytowania

  • 9

    CrossRef

  • 7

    Web of Science

  • 8

    Scopus

Autorzy (3)

Cytuj jako

Pełna treść

pobierz publikację
pobrano 21 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Copyright (2020 SAGE Publications)

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuły w czasopismach
Opublikowano w:
MATHEMATICS AND MECHANICS OF SOLIDS nr 25, strony 389 - 406,
ISSN: 1081-2865
Język:
angielski
Rok wydania:
2020
Opis bibliograficzny:
Rahali Y., Eremeev V., Ganghoffer J.: Surface effects of network materials based on strain gradient homogenized media// MATHEMATICS AND MECHANICS OF SOLIDS -Vol. 25,iss. 2 (2020), s.389-406
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1177/1081286519877684
Bibliografia: test
  1. Sanchez-Hubert, J, and Sanchez-Palencia, E. Introduction aux me´thodes asymptotiques et a`l'homoge´ne´isation: application al a me´canique des milieux continus. Paris: Masson, 1992.
  2. Bornet, M, Bretheau, T, and Gilormini, P. Homoge´ne´isation en me´canique des mate´riaux 1. Hermes Sciences, 2001. otwiera się w nowej karcie
  3. El Jarroudi, M, and Brillard, A. Asymptotic behaviour of a cylindrical elastic structure periodically reinforced along identical fibres. IMA J Appl Math 2001; 66: 567-590. otwiera się w nowej karcie
  4. Bellieud, M, and Bouchitte´, G. Homogenization of a soft elastic material reinforced by fibers. Asymptotic Anal 2002; 32: 153-183. otwiera się w nowej karcie
  5. Sili, A. Homogenization of an elastic medium reinforced by anisotropic fibers. Asymptotic Anal 2005; 42: 133-171. otwiera się w nowej karcie
  6. Dos Reis, F, and Ganghoffer, JF. Discrete homogenization of architectured materials: Implementation of the method in a simulation tool for the systematic prediction of their effective elastic properties. Tech Mech 2010; 30: 85-109.
  7. Dos Reis, F, and Ganghoffer, JF. Construction of micropolar continua from the asymptotic homogenization of beam lattices. Comput Struct 2012; 112-113: 354-363.
  8. Askes, H, and Aifantis, EC. Gradient elasticity in statics and dynamics: an overview of formulations, length scale identification procedures, finite element implementations and new results. Int J Solids Struct 2011; 48: 1962-1990. otwiera się w nowej karcie
  9. Trinh, DK, Ja¨nicke, R, Auffray, N, et al. Evaluation of generalized continuum substitution models for heterogeneous materials. Int J Multiscale Comput Eng 2011; 10: 527-549. otwiera się w nowej karcie
  10. Forest, S. Milieux continus ge´ne´ralise´s et mate´riaux he´te´roge`nes. Paris: Presses de l'É cole des Mines, 2006.
  11. Auffray, N, dell'Isola, F, Eremeyev, V, et al. Analytical continuum mechanics a la Hamilton-Piola: least action principle for second gradient continua and capillary fluids. Math Mech Solids 2015; 20: 375-417. otwiera się w nowej karcie
  12. Dell'Isola, F, Giorgio, I, and Andreaus, U. Elastic pantographic 2D lattices: a numerical analysis on static response and wave propagation. Proc Est Acad Sci 2014; 64: 219-225. otwiera się w nowej karcie
  13. Cosserat, E, and Cosserat, F. The´orie des corps de´formables. Paris : Herman et Fils, 1909. otwiera się w nowej karcie
  14. Toupin, R. Elastic materials with couple stresses. Arch Ration Mech Anal 1962; 11: 385-413. otwiera się w nowej karcie
  15. Mindlin, RD. Microstructure in linear elasticity. Arch Ration Mech Anal 1964; 16: 51-78. otwiera się w nowej karcie
  16. Mindlin, RD. Second gradient of strain and surface-tension in linear elasticity. Int J Solids Struct 1965; 1: 417-438. otwiera się w nowej karcie
  17. Germain, P. The method of virtual power in continuum mechanics. Part 2. Microstructure. SIAM J Appl Math 1973; 25: 556-575. otwiera się w nowej karcie
  18. Sedov, LI. Mathematical methods for constructing new models of continuous media. Russ Math Surv 1965; 20(5): 123. otwiera się w nowej karcie
  19. Cosserat, E, and Cosserat, F. Sur la the´orie de l'e´lasticite´. Ann Fac Sci Toulouse Math 1896 ; 10 : 1-116. otwiera się w nowej karcie
  20. Eringen, AC, and Suhubi, ES. Nonlinear theory of simple micro-elastic solids. Int J Eng Sci 1964; 2: 189-203. otwiera się w nowej karcie
  21. Mindlin, RD, and Eshel, NN. On first strain gradient theories in linear elasticity. Int J Solids Struct 1968; 4: 109-124. otwiera się w nowej karcie
  22. Chen, Y, Lee, JD, and Eskandarian, A. Atomistic viewpoint of the applicability of microcontinuum theories. Int J Solids Struct 2004; 41: 2085-2097. otwiera się w nowej karcie
  23. Edelen, DGB. Protoelastic bodies with large deformation. Arch Ration Mech Anal 1969; 34: 283-300. otwiera się w nowej karcie
  24. Eringen, AC. Microcontinuum field theories. I. Foundations and solids. New York: Springer-Verlag, 1999. otwiera się w nowej karcie
  25. Eringen, AC. A unified theory of thermomechanical materials. Int J Eng Sci 1966; 4: 179-202. otwiera się w nowej karcie
  26. Hadjesfandiari, AR, and Dargush, GF. Couple stress theory for solids. Int J Solids Struct 2011; 48: 2496-2510. otwiera się w nowej karcie
  27. Lam, DCC, Yang, F, Chong, ACM, et al. Experiments and theory in strain gradient elasticity. J Mech Phys Solids 2003; 51: 1477-1508. otwiera się w nowej karcie
  28. Mindlin, RD, and Tiersten, HF. Effects of couple stresses in linear elasticity. Arch Ration Mech Anal 1962; 11: 415-448. otwiera się w nowej karcie
  29. Polyzos, D, and Fotiadis, DI. Derivation of Mindlin's first and second-strain gradient elastic theory via simple lattice and continuum models. Int J Solids Struct 2012; 49: 470-480. otwiera się w nowej karcie
  30. Yang, F, Chong, ACM, Lam, DCC, et al. Couple stress based strain gradient theory for elasticity. Int J Solids Struct 2002; 39: 2731-2743. otwiera się w nowej karcie
  31. Forest, S. Mechanics of generalized continua: construction by homogenization. J Phys IV 1998; 8: 39-48. otwiera się w nowej karcie
  32. Forest, S. Homogenization methods and the mechanics of generalized continua. Part 2. Theor Appl Mech 2002; 28-29: 113-143. otwiera się w nowej karcie
  33. Kouznetsova, V, Geers, MGD, and Brekelmans, WAM. Multi-scale constitutive modelling of heterogeneous materials with a gradient-enhanced computational homogenization scheme. Int J Numer Methods Eng 2002; 54: 1235-1260. otwiera się w nowej karcie
  34. Desrues, J, and Viggiani, G. Strain localization in sand: an overview of the experimental results obtained in grenoble using stereophotogrammetry. Int J Numer Anal Methods Geomech 2004; 28: 279-321. otwiera się w nowej karcie
  35. Pideri, C, and Seppecher, P. A second gradient material resulting from the homogenization of a heterogeneous linear elastic medium. Cont Mech Therm 1997; 9: 241-257. otwiera się w nowej karcie
  36. Camar-Eddine, M, and Seppecher, P. Determination of the closure of the set of elasticity functionals. Arch Ration Mech Anal 2003; 170: 211-245. otwiera się w nowej karcie
  37. El Jarroudi, M. Homogenization of a nonlinear elastic fibre-reinforced composite: a second gradient nonlinear elastic material. J Math Anal Appl 2013; 403: 487-505. otwiera się w nowej karcie
  38. Chambon, R, Caillerie, D, and El Hassan, N. É tude de la localisation unidimensionnelle a`l'aide d'un mode`le de second gradient. C R Acad Sci 1996; 323: 231-238. otwiera się w nowej karcie
  39. Chambon, R, Caillerie, D, and El Hassan, N. One-dimensional localization studied with a second grade model. Eur J Mech A Solids 1998; 17: 637-656. otwiera się w nowej karcie
  40. Chambon, R, Caillerie, D, and Matsuchima, T. Plastic continuum with microstructure, local second gradient theories for geomaterials: localization studies. Int J Solids Struct 2001; 38: 8503-8527. otwiera się w nowej karcie
  41. Cuenot, S, Fre´tigny, C, Demoustier-Champagne, S, et al. Surface tension effect on the mechanical properties of nanomaterials measured by atomic force microscopy. Phys Rev B 2004; 69: 165410. otwiera się w nowej karcie
  42. Jing, GY, Duan, HL, Sun, XM, et al. Surface effects on elastic properties of silver nanowires: Contact atomic-force microscopy. Phys Rev B 2006; 73: 235409. otwiera się w nowej karcie
  43. Chen, C, Shi, Y, Zhang, Y, et al. Size dependence of Young's modulus in ZnO nanowires. Phys Rev Lett 2006; 96: 075505. otwiera się w nowej karcie
  44. He, J, and Lilley, CM. Surface effect on the elastic behavior of static bending nanowires. Nano Lett 2008; 8: 1798-1802. otwiera się w nowej karcie
  45. Liu, X, Luo, J, and Zhu, J. Size effect on the crystal structure of silver nanowires. Nano Lett 2006; 6: 408-412. otwiera się w nowej karcie
  46. Laplace, PS. Sur l'action capillaire. Supple´ment a`la the´orie de l'action capillaire. In: Traite´de me´canique ce´leste, Vol. 4, Supplement 1, Livre X. Paris: Gauthier-Villars et fils, 1805, pp.771-777.
  47. Laplace, PS. À la the´orie de l'action capillaire. Supple´ment a`la the´orie de l'action capillaire. In: Traite´de me´canique ce´leste, Vol. 4, Supplement 2, Livre X. Paris: Gauthier-Villars et fils, 1806, pp.909-945.
  48. Young, T. An essay on the cohesion of fluids. Philos Trans R Soc Lond 1805; 95: 65-87. otwiera się w nowej karcie
  49. Poisson, SD. Nouvelle the´orie de l'action capillaire. Paris: Bachelier Pe`re et Fils, 1831. otwiera się w nowej karcie
  50. Longley, WR, and Name, RGV. The collected works of J. Willard Gibbs, PhD, LLD. Volume I. Thermodynamics. New York: Longmans, 1928. otwiera się w nowej karcie
  51. De Gennes, PG, Brochard-Wyart, F, and Que´re´, D. Capillarity and wetting phenomena: drops, bubbles, pearls, waves. New York: Springer, 2004.
  52. Rowlinson, JS, and Widom, B. Molecular theory of capillarity. New York: Dover, 2003.
  53. Gurtin, ME, and Murdoch, AI. Addenda to our paper A continuum theory of elastic material surfaces. Arch Ration Mech Anal 1975; 59: 389-390. otwiera się w nowej karcie
  54. Gurtin, ME, and Murdoch, AI. A continuum theory of elastic material surfaces. Arch Ration Mech Anal 1975; 57: 291-323. otwiera się w nowej karcie
  55. Wang, J, Duan, HL, Huang, ZP, et al. A scaling law for properties of nano-structured materials. Proc R Soc Lond A 2006; 462: 1355-1363. otwiera się w nowej karcie
  56. Steigmann, DJ, and Ogden, RW. Plane deformations of elastic solids with intrinsic boundary elasticity. Proc R Soc Lond A 1997; 453: 853-877. otwiera się w nowej karcie
  57. Steigmann, DJ, and Ogden, RW. Elastic surface-substrate interactions. Proc R Soc Lond A 1999; 455: 437-474. otwiera się w nowej karcie
  58. Javili, A, McBride, A, and Steinmann, P. Thermomechanics of solids with lower-dimensional energetics: on the importance of surface, interface, and curve structures at the nanoscale, a unifying review. Appl Mech Rev 2012 65: 010802. otwiera się w nowej karcie
  59. Javili, A, dell'Isola, F, and Steinmann, P. Geometrically nonlinear higher-gradient elasticity with energetic boundaries. J Mech Phys Solids 2013; 61: 2381-2401. otwiera się w nowej karcie
  60. Podio-Guidugli, P, and Caffarelli, GV. Surface interaction potentials in elasticity. Arch Ration Mech Anal 1990; 109: 345-385. otwiera się w nowej karcie
  61. Povstenko, Y. Mathematical modeling of phenomena caused by surface stresses in solids. Surf Effects Solid Mech 2013; 30: 135-153. otwiera się w nowej karcie
  62. Sˇilhavy´, M. A direct approach to nonlinear shells with application to surface-substrate interactions. Math Mech Complex Syst 2013; 1: 211-232.
  63. Lurie, S, and Belov, P. Gradient effects in fracturemechanics for nano-structured materials. Eng Fract Mech 2014; 130: 3-11. otwiera się w nowej karcie
  64. Lurie, SA, and Kalamkarov, AL. General theory of continuous media with conserved dislocations. Int J Solids Struct 2007; 44: 7468-7485. otwiera się w nowej karcie
  65. Lurie, SA, and Belov, PA. Cohesion field: Barenblatt's hypothesis as formal corollary of theory of continuous media with conserved dislocations. Int J Fract 2008; 150: 181-194. otwiera się w nowej karcie
  66. Lurie, S, Volkov-Bogorodsky, D, Zubov, V, et al. Advanced theoretical and numerical multiscale modeling of cohesion/ adhesion interactions in continuum mechanics and its applications for filled nanocomposites. Comput Mater Sci 2009; 45: 709-714. otwiera się w nowej karcie
  67. Rubin, M, and Benveniste, Y. A Cosserat shell model for interphases in elastic media. J Mech Phys Solids 2004; 52: 1023-1052. otwiera się w nowej karcie
  68. Duan, HL, and Karihaloo, BL. Thermo-elastic properties of heterogeneous materials with imperfect interfaces: generalized Levin's formula and Hill's connections. J Mech Phys Solids 2007; 55: 1036-1052. otwiera się w nowej karcie
  69. Duan, HL, Wang, J, Huang, ZP, et al. Size-dependent effective elastic constants of solids containing nanoinhomogeneities with interface stress. J Mech Phys Solids 2005; 53: 1574-1596. otwiera się w nowej karcie
  70. Duan, HL, Wang, J, Karihaloo, BL, et al. Nanoporous materials can be made stiffer than non-porous counterparts by surface modification. Acta Mater 2006; 54: 2983-2990. otwiera się w nowej karcie
  71. Duan, HL, Wang, J, and Karihaloo, BL. Theory of elasticity at the nanoscale. Adv Appl Mech 2009; 42: 1-68. otwiera się w nowej karcie
  72. Kushch, VI, Chernobai, VS, and Mishuris, GS. Longitudinal shear of a composite with elliptic nanofibers: local stresses and effective stiffness. Int J Eng Sci 2014; 84: 79-94. otwiera się w nowej karcie
  73. Kushch, VI, Sevostianov, I, and Chernobai, VS. Effective conductivity of composite with imperfect contact between elliptic fibers and matrix: Maxwell's homogenization scheme. Int J Eng Sci 2014; 83: 146-161. otwiera się w nowej karcie
  74. Wang, J, Huang, Z, Duan, H, et al. Surface stress effect in mechanics of nanostructured materials. Acta Mech Solida Sin 2011; 24: 52-82. otwiera się w nowej karcie
  75. Altenbach, H, and Eremeyev, VA. On the shell theory on the nanoscale with surface stresses. Int J Eng Sci 2011; 49: 1294-1301. otwiera się w nowej karcie
  76. Altenbach, H, Eremeyev, VA, and Morozov, NF. Surface viscoelasticity and effective properties of thin-walled structures at the nanoscale. Int J Eng Sci 2012; 59: 83-89. otwiera się w nowej karcie
  77. Altenbach, H, Eremeyev, VA, and Morozov, NF (2013). Mechanical properties of materials considering surface effects. In: Cocks, A, and Wang, J (eds.) IUTAM symposium on surface effects in the mechanics of nanomaterials and heterostructures. Dordrecht: Springer, 2013, pp.105-115. otwiera się w nowej karcie
  78. Eremeyev, VA, Altenbach, H, and Morozov, NF. The influence of surface tension on the effective stiffness of nanosized plates. Doklady Phys 2009; 54: 98-100. otwiera się w nowej karcie
  79. Heinonen, S, Huttunen-Saarivirta, E, Nikkanen, JP, et al. Antibacterial properties and chemical stability of superhydrophobic silver-containing surface produced by sol-gel route. Colloids Surf A Physicochem Eng Aspects 2014; 453: 149-161. otwiera się w nowej karcie
  80. Wang, ZQ, Zhao, YP, and Huang, ZP. The effects of surface tension on the elastic properties of nano structures. Int J Eng Sci 2010; 48: 140-150. otwiera się w nowej karcie
  81. Guo, JG, and Zhao, YP. The size-dependent elastic properties of nanofilms with surface effects. J Appl Phys 2005; 98: 074306. otwiera się w nowej karcie
  82. Eremeyev, V. On effective properties of materials at the nano-and microscales considering surface effects. Acta Mech 2015; 227: 29-42. otwiera się w nowej karcie
  83. Rahali, Y, Dos Reis, F, and Ganghoffer, JF. Multiscale homogenization schemes for the construction of second order grade anisotropic continuum media of architectured materials. J Multiscale Comput Eng 2017; 15: 35-78. otwiera się w nowej karcie
  84. Rahali, Y, Giorgio, I, Ganghoffer, JF, et al. Homogenization a`la Piola produces second gradient continuum models for linear pantographic lattices. Int J Eng Sci 2015; 97: 148-172. otwiera się w nowej karcie
  85. Agrawal, R, Peng, B, Gdoutos, EE, et al. Elasticity size effects in ZnO nanowires: a combined experimental-computational approach. Nano Lett 2008; 8: 3668-3674. otwiera się w nowej karcie
Weryfikacja:
Politechnika Gdańska

wyświetlono 48 razy

Publikacje, które mogą cię zainteresować

Meta Tagi