The Influence of LED Lighting Sources on the Nature of Power Factor - Publikacja - MOST Wiedzy

Wyszukiwarka

The Influence of LED Lighting Sources on the Nature of Power Factor

Abstrakt

This article presents measurements of electric power absorbed by a newly built facility for office and scientific research activities. These measurements highlighted the need for compensation of capacitive reactive power—not predicted by the designer—due to the vast use of LED lighting in the facility. The article also describes a reactive power compensation system, designed on the basis of the above-mentioned measurements, and the introduced control and measurement system that enables on-site monitoring and online analysis of consumed energy and power. The research was carried out using popular LED lighting sources available on the local market (Poland). Basic electrical parameters of the locally available LEDs were measured as a function of the changes in harmonic levels occurring in the supply voltage. The test illustrated that samples were characterized by a very low power factor, which decreased as the level of harmonic disturbances increased. On the basis of the measurements, the authors suggest that obligatory requirements should be introduced in regard to the minimum power factor at the level of 0.9 for popular LED lighting sources (below 25 W)

Cytuj jako

Pełna treść

pobierz publikację
pobrano 97 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Creative Commons: CC-BY otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuł w czasopiśmie wyróżnionym w JCR
Opublikowano w:
ENERGIES nr 11, strony 1 - 12,
ISSN: 1996-1073
Język:
angielski
Rok wydania:
2018
Opis bibliograficzny:
Włas M., Galla S.: The Influence of LED Lighting Sources on the Nature of Power Factor// ENERGIES. -Vol. 11, nr. 16 (2018), s.1-12
Bibliografia: test
  1. Kwasnowski, P.; Fedorczak-Cisak, M.; Knap, K. Problems of Technology of Energy-Saving Buildings and Their Impact on Energy Efficiency in Buildings. IOP Conf. Ser. Mater. Sci. Eng. 2017, 245, 072043. [CrossRef] otwiera się w nowej karcie
  2. Kazmierkowski, M.P. Power Theories for Improved Power Quality (Pasko, M. and Benysek, G.; 2012) [Book News]. otwiera się w nowej karcie
  3. IEEE Ind. Electron. Mag. 2013, 7, 68-69. [CrossRef] otwiera się w nowej karcie
  4. Bunjongjit, S.; Ngaopitakkul, A.; Leelajindakrairerk, M. Analysis of harmonics in indoor Lighting System with LED and fluorescent luminaire. In Proceedings of the 2017 IEEE 3rd International Future Energy Electronics Conference and ECCE Asia (IFEEC 2017-ECCE Asia), Kaohsiung, Taiwan, 3-7 June 2017; otwiera się w nowej karcie
  5. Dolara, A.; Leva, S. Power Quality and Harmonic Analysis of End User Devices. Energies 2012, 5, 5453-5466. [CrossRef] otwiera się w nowej karcie
  6. Tulsky, V.N.; Vanin, A.S.; Tolba, M.A.; Sharova, A.Y.; Diab, A.A.Z. Study and analysis of power quality for an electric power distribution system-Case study: Moscow region. In Proceedings of the 2016 IEEE NW Russia Young Researchers in Electrical and Electronic Engineering Conference (EIConRusNW), St. Petersburg, Russia, 2-3 February 2016; pp. 710-716. otwiera się w nowej karcie
  7. Marah, B.; Bhavanam, Y.R.; Taylor, G.A.; Ekwue, A.O. Impact of electric vehicle charging systems on low voltage distribution networks. In Proceedings of the 2016 51st International Universities Power Engineering Conference (UPEC), Coimbra, Portugal, 6-9 September 2016; pp. 1-6. otwiera się w nowej karcie
  8. Tan, S.T.; Sun, X.W.; Demir, H.V.; DenBaars, S.P. Advances in the LED Materials and Architectures for Energy-Saving Solid-State Lighting Toward "Lighting Revolution". IEEE Photonics J. 2012, 4, 613-619. [CrossRef] otwiera się w nowej karcie
  9. PF_Factor_california. Available online: https://pdfs.semanticscholar.org/2a03/8b20e758b6d60f050ae187 46ca413dbaa48b.pdf (accessed on 19 January 2018). otwiera się w nowej karcie
  10. Bellia, L.; Bisegna, F.; Spada, G. Lighting in indoor environments: Visual and non-visual effects of light sources with different spectral power distributions. Build. Environ. 2011, 46, 1984-1992. [CrossRef] otwiera się w nowej karcie
  11. Salvadori, G.; Fantozzi, F.; Rocca, M.; Leccese, F. The Energy Audit Activity Focused on the Lighting Systems in Historical Buildings. Energies 2016, 9, 998. [CrossRef] otwiera się w nowej karcie
  12. Khan, N.; Abas Kalair, N. Comparative Study of energy saving light sources. Renew. Sustain. Energy Rev. 2011, 15, 296-309. [CrossRef] otwiera się w nowej karcie
  13. Aman, M.M.; Jasmon, G.B.; Mokhlis, H.; Bakar, A.H.A. Analysis of the performance of domestic lighting lamps. Spec. Sect. Transit. Pathw. Low Carbon Econ. 2013, 52, 482-500. [CrossRef] otwiera się w nowej karcie
  14. Amorim, R.; López, J.C.; Molina-Moreno, V.; Peña-García, A. Use of Natural Light vs. Cold LED Lighting in Installations for the Recovery of Victims of Gender Violence: Impact on Energy Consumption and Victims' Recovery. Sustainability 2017, 9, 562. [CrossRef] Energies 2018, 11, 1479 otwiera się w nowej karcie
  15. Behar-Cohen, F.; Martinsons, C.; Viénot, F.; Zissis, G.; Barlier-Salsi, A.; Cesarini, J.P.; Enouf, O.; Garcia, M.; Picaud, S.; Attia, D. Light-emitting diodes (LED) for domestic lighting: Any risks for the eye? Prog. Retin. Eye Res. 2011, 30, 239-257. [CrossRef] [PubMed] otwiera się w nowej karcie
  16. Tang, Y.; Chen, Q.; Ju, P.; Jin, Y.; Shen, F.; Qi, B.; Xu, Z. Research on load characteristics of energy-saving lamp and LED lamp. In Proceedings of the 2016 IEEE International Conference on Power System Technology (POWERCON), Wollongong, Australia, 28 September-1 October 2016; pp. 1-5. otwiera się w nowej karcie
  17. TD_PQ-Box 200_en_160506.pdf. Available online: https://www.a-eberle.de/sites/default/files/media/T D_PQ-Box%20200_en_160506.pdf (accessed on 18 December 2017).
  18. IEEE. IEEE Standard Definitions for the Measurement of Electric Power Quantities Under Sinusoidal, Nonsinusoidal, Balanced, or Unbalanced Conditions; IEEE Std 1459-2010 Revis. IEEE Std 1459-2000; IEEE: Piscataway, NJ, USA, 2010; pp. 1-50. [CrossRef] otwiera się w nowej karcie
  19. Kabalci, E. Reactive Power Compensation in AC Power Systems. In Reactive Power Control in AC Power Systems: Fundamentals and Current Issues; otwiera się w nowej karcie
  20. Mahdavi Tabatabaei, N., Jafari Aghbolaghi, A., Bizon, N., Blaabjerg, F., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 275-315, ISBN 978-3-319-51118-4. otwiera się w nowej karcie
  21. Zobaa, A.F.; Aleem, S.H.E.A. A New Approach for Harmonic Distortion Minimization in Power Systems Supplying Nonlinear Loads. IEEE Trans. Ind. Inform. 2014, 10, 1401-1412. [CrossRef] otwiera się w nowej karcie
  22. PD87GB11_12.pdf. Available online: http://www.lovatoelectric.com/images/data/PD87GB11_12.pdf (accessed on 12 January 2018).
  23. Single-phase shunt reactors ED1K.pdf. Available online: http://www.en.elhand.pl/products/chokes/shunt -reactors/Single_phase_shunt_reactors (accessed on 19 January 2018). otwiera się w nowej karcie
  24. Zakladka2.pdf. Available online: https://www.ems.gda.pl/index.php/zakladka2?format=raw&task=dow nload&fid=9 (accessed on 19 January 2018). otwiera się w nowej karcie
  25. USALED T8UNV Datasheet.pdf. Available online: https://usaled.com/media/pdf/USALED%20T8UNV% 20Datasheet.pdf (accessed on 19 January 2018).
  26. USALED DLM Datasheet.pdf. Available online: https://usaled.com/media/pdf/USALED%20DLM%20Da tasheet%20.pdf (accessed on 19 January 2018).
Weryfikacja:
Politechnika Gdańska

wyświetlono 164 razy

Publikacje, które mogą cię zainteresować

Meta Tagi