The Influence of Substitution of a Phosphorus-Containing Polyol with the Bio-polyol on the Properties of Bio-based PUR/PIR Foams - Publikacja - MOST Wiedzy

Wyszukiwarka

The Influence of Substitution of a Phosphorus-Containing Polyol with the Bio-polyol on the Properties of Bio-based PUR/PIR Foams

Abstrakt

In this work, effects of incorporating of a phosphorus-containing polyol into rigid polyurethane/polyisocyanurate foams’ formulations developed with use of two different bio-based polyols, derived from crude glycerol or liquefied cellulose were examined. The bio-polyol derived from crude glycerol was synthesized via two-step process from crude glycerol and castor oil, whereas the bio-polyol derived from liquefied cellulose was prepared in lignocellulose biomass liquefaction process. Rigid polyurethane/polyisocyanurate foams were prepared by substitution 25, 50, 75 and 100 wt% of a bio-polyol with the phosphorus-containing polyol. Density, compressive modulus, thermal stability and chemical and cellular structure content of the PUR/PIR foams were studied. Cell morphology was also observed by scanning electron microscopy. Furthermore, thermal stability and flammability were investigated. The results show that the phosphorus-based polyol favors some PUR/PIR foams properties such as fire retardancy, what was expected, but also compressive strength behavior.

Cytowania

  • 2

    CrossRef

  • 1

    Web of Science

  • 2

    Scopus

Słowa kluczowe

Pełna treść

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuł w czasopiśmie wyróżnionym w JCR
Opublikowano w:
JOURNAL OF POLYMERS AND THE ENVIRONMENT nr 26, strony 3877 - 3888,
ISSN: 1566-2543
Język:
angielski
Rok wydania:
2018
Opis bibliograficzny:
Gosz K., Haponiuk J., Piszczyk Ł.: The Influence of Substitution of a Phosphorus-Containing Polyol with the Bio-polyol on the Properties of Bio-based PUR/PIR Foams// JOURNAL OF POLYMERS AND THE ENVIRONMENT. -Vol. 26, (2018), s.3877-3888
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1007/s10924-018-1265-9
Bibliografia: test
  1. Deka H, Karak N (2009) Bio-based hyperbranched polyurethanes for surface coating applications. Prog Org Coat 66:192-198. https ://doi.org/10.1016/j.porgc oat.2009.07.005 otwiera się w nowej karcie
  2. Hatti-Kaul R, Törnvall U, Gustafsson L, Börjesson P (2007) Industrial biotechnology for the production of bio-based chem- icals-a cradle-to-grave perspective. Trends Biotechnol 25:119- 124. https ://doi.org/10.1016/j.tibte ch.2007.01.001 otwiera się w nowej karcie
  3. Sharma V, Kundu PP (2008) Condensation polymers from natu- ral oils. Prog Polym Sci 33:1199-1215. https ://doi.org/10.1016/j. progp olyms ci.2008.07.004 otwiera się w nowej karcie
  4. Hablot E, Zheng D, Bouquey M, Avérous L (2008) Polyure- thanes based on castor oil: kinetics, chemical, mechanical and thermal properties. Macromol Mater Eng 293:922-929. https :// doi.org/10.1002/mame.20080 0185 otwiera się w nowej karcie
  5. Lu Y, Larock RC (2008) Soybean-oil-based waterborne polyure- thane dispersions: effects of polyol functionality and hard segment content on properties. Biomacromolecules 9:3332-3340. https :// doi.org/10.1021/bm801 030g otwiera się w nowej karcie
  6. Prociak A (2008) Heat-insulating properties of rigid polyurethane foams synthesized with use of vegetable oils-based polyols. Polimery 53:195-200 otwiera się w nowej karcie
  7. Zieleniewska M, Leszczyński MK, Kurańska M et al (2015) Prep- aration and characterisation of rigid polyurethane foams using a rapeseed oil-based polyol. Ind Crops Prod 74:887-897. https :// doi.org/10.1016/j.indcr op.2015.05.081 otwiera się w nowej karcie
  8. Tanaka R, Hirose S, Hatakeyama H (2008) Preparation and char- acterization of polyurethane foams using a palm oil-based polyol. Bioresour Technol 99:3810-3816. https ://doi.org/10.1016/j.biort ech.2007.07.007 otwiera się w nowej karcie
  9. Nik Pauzi NNP, Majid A, Dzulkifli R, Yahya MH MY (2014) Development of rigid bio-based polyurethane foam reinforced with nanoclay. Compos B 67:521-526. https ://doi.org/10.1016/j. compo sites b.2014.08.004 otwiera się w nowej karcie
  10. Zhang M, Pan H, Zhang L et al (2014) Study of the mechanical, thermal properties and flame retardancy of rigid polyurethane foams prepared from modified castor-oil-based polyols. Ind Crops Prod 59:135-143. https ://doi.org/10.1016/j.indcr op.2014.05.016 otwiera się w nowej karcie
  11. Ionescu M, Radojčić D, Wan X et al (2016) Highly functional polyols from castor oil for rigid polyurethanes. Eur Polym J 84:736-749. https ://doi.org/10.1016/j.eurpo lymj.2016.06.006 otwiera się w nowej karcie
  12. Hu S, Wan C, Li Y (2012) Production and characterization of biopolyols and polyurethane foams from crude glycerol based liquefaction of soybean straw. Bioresour Technol 103:227-233. https ://doi.org/10.1016/j.biort ech.2011.09.125 otwiera się w nowej karcie
  13. Fig. 7 FTIR spectra of prepared PUR/PIR foams a CG 100 , b LC 100 and c E560 100 otwiera się w nowej karcie
  14. Guo A, Ivan J, Petrovic Z (2000) Rigid polyurethane foams based on soybean oil. J Appl Polym Sci 77:467-473 otwiera się w nowej karcie
  15. Narine SS, Kong X, Bouzidi L, Sporns P (2007) Physical prop- erties of polyurethanes produced from polyols from seed oils: I. Elastomers. JAOCS. J Am Oil Chem Soc 84:55-63. https :// doi.org/10.1007/s1174 6-006-1006-4 otwiera się w nowej karcie
  16. Tan S, Abraham T, Ference D, Macosko CW (2011) Rigid polyurethane foams from a soybean oil-based Polyol. Polymer 52:2840-2846. https ://doi.org/10.1016/j.polym er.2011.04.040 otwiera się w nowej karcie
  17. Husic S (2005) Thermal and mechanical properties of glass rein- forced soy-based polyurethane composites. Compos Sci Technol 65:19-25. https ://doi.org/10.1016/j.comps citec h.2004.05.020 otwiera się w nowej karcie
  18. Petrovic Z (2008) Polyurethanes from vegetable oils. Polym Rev 48:109-155. https ://doi.org/10.1080/15583 72070 18342 24 otwiera się w nowej karcie
  19. Puri M, Abraham RE, Barrow CJ (2012) Biofuel production: prospects, challenges and feedstock in Australia. Renew Sus- tain Energy Rev 16:6022-6031. https ://doi.org/10.1016/j. rser.2012.06.025 otwiera się w nowej karcie
  20. Ragauskas AJ (2006) The path forward for biofuels and biomateri- als. Science 311:484-489. https ://doi.org/10.1126/scien ce.11147 36 otwiera się w nowej karcie
  21. Din NSMNM., Idris Z, Kian YS, Hassan HA (2013) Preparation of polyglycerol from palm-biodiesel crude glycerin. J Oil Palm Res 25:289-297
  22. Cheng D, Wang L, Shahbazi A et al (2014) Characterization of the physical and chemical properties of the distillate fractions of crude bio-oil produced by the glycerol-assisted liquefaction of swine manure. Fuel 130:251-256. https ://doi.org/10.1016/j. fuel.2014.04.022 otwiera się w nowej karcie
  23. Hu S, Li Y (2014) Polyols and polyurethane foams from base-cat- alyzed liquefaction of lignocellulosic biomass by crude glycerol: effects of crude glycerol impurities. Ind Crops Prod 57:188-194. https ://doi.org/10.1016/j.indcr op.2014.03.032 otwiera się w nowej karcie
  24. Ionescu M, Petrović ZS (2010) High functionality polyether poly- ols based on polyglycerol. J Cell Plast 46:223-237. https ://doi. org/10.1177/00219 55X09 35588 7 otwiera się w nowej karcie
  25. Luo X, Hu S, Zhang X, Li Y (2013) Thermochemical conversion of crude glycerol to biopolyols for the production of polyurethane foams. Bioresour Technol 139:323-329. https ://doi.org/10.1016/j. biort ech.2013.04.011 otwiera się w nowej karcie
  26. Bourbigot S, Duquesne S (2007) Fire retardant polymers: recent developments and opportunities. J Mater Chem 17:2283. https :// doi.org/10.1039/b7025 11d otwiera się w nowej karcie
  27. Kiliaris P, Papaspyrides CD (2014) Polymers on fire. Polym Green Flame Retard. https ://doi.org/10.1016/B978-0-444-53808 -6.00001 -9 otwiera się w nowej karcie
  28. Hale RC, Kim SL, Harvey E et al (2008) Antarctic research bases: local sources of polybrominated diphenyl ether (PBDE) flame retardants. Environ Sci Technol 42:1452-1457. https ://doi. org/10.1021/es702 547a otwiera się w nowej karcie
  29. Hale R et al (2001) Persistent pollutants in land-applied sludges. Nature 412:140-141. https ://doi.org/10.1016/j.echo.2007.08.009 otwiera się w nowej karcie
  30. Thirumal M, Singha NK, Khastgir D et al (2010) Halogen-free flame-retardant rigid polyurethane foams: Effect of alumina trihydrate and triphenylphosphate on the properties of polyure- thane foams. J Appl Polym Sci 21:NA. https ://doi.org/10.1002/ app.31626 otwiera się w nowej karcie
  31. Chigwada G, Wilkie CA (2003) Synergy between conventional phosphorus fire retardants and organically-modified clays can lead to fire retardancy of styrenics. Polym Degrad Stab 81:551-557. https ://doi.org/10.1016/S0141 -3910(03)00156 -3 otwiera się w nowej karcie
  32. Zhang M, Luo Z, Zhang J et al (2015) Effects of a novel phos- phorus-nitrogen flame retardant on rosin-based rigid polyu- rethane foams. Polym Degrad Stab 120:427-434. https ://doi. org/10.1016/j.polym degra dstab .2015.08.001 otwiera się w nowej karcie
  33. Gaan S, Liang S, Mispreuve H et al (2015) Flame retardant flexi- ble polyurethane foams from novel DOPO-phosphonamidate addi- tives. Polym Degrad Stab 113:180-188. https ://doi.org/10.1016/j. polym degra dstab .2015.01.007 otwiera się w nowej karcie
  34. Guo C, Zhou L, Lv J (2013) Effects of expandable graphite and modified ammonium polyphosphate on the flame-retardant and mechanical properties of wood flour-polypropylene composites. Polym Polym Compos 21:449-456. https ://doi.org/10.1002/app25 933 otwiera się w nowej karcie
  35. Zheng X, Wang G, Xu W (2014) Roles of organically-modified montmorillonite and phosphorous flame retardant during the com- bustion of rigid polyurethane foam. Polym Degrad Stab 101:32- 39. https ://doi.org/10.1016/j.polym degra dstab .2014.01.015 otwiera się w nowej karcie
  36. Hejna A, Kosmela P, Kirpluks M et al (2017) Structure, mechan- ical, thermal and fire behavior assessments of environmentally friendly crude glycerol-based rigid polyisocyanurate foams. J Polym Environ. https ://doi.org/10.1007/s1092 4-017-1086-2 otwiera się w nowej karcie
  37. Xi W, Qian L, Chen Y et al (2015) Addition flame-retardant behaviors of expandable graphite and [bis(2-hydroxyethyl) amino]-methyl-phosphonic acid dimethyl ester in rigid pol- yurethane foams. Polym Degrad Stab 122:36-43. https ://doi. org/10.1016/j.polym degra dstab .2015.10.013 otwiera się w nowej karcie
  38. Kosmela P, Hejna A, Formela K et al (2016) Biopolyols obtained via crude glycerol-based liquefaction of cellulose: their structural, rheological and thermal characterization. Cellu- lose 23:2929-2942. https ://doi.org/10.1007/s1057 0-016-1034-7 otwiera się w nowej karcie
  39. Mosiewicki MA, Dell'Arciprete GA, Aranguren MI, Marcovich NE (2009) Polyurethane foams obtained from castor oil-based polyol and filled with wood flour. J Compos Mater 43:3057- 3072. https ://doi.org/10.1177/00219 98309 34534 2 otwiera się w nowej karcie
  40. Piszczyk Ł, Strankowski M, Danowska M et al (2014) Rigid pol- yurethane foams from a polyglycerol-based polyol. Eur Polym J 57:143-150. https ://doi.org/10.1016/j.eurpo lymj.2014.05.012 otwiera się w nowej karcie
  41. Modesti M, Lorenzetti A (2003) Improvement on fire behaviour of water blown PIR-PUR foams: use of an halogen-free flame retardant. Eur Polym J 39:263-268. https ://doi.org/10.1016/ S0014 -3057(02)00198 -2 otwiera się w nowej karcie
  42. Chen X, Huo L, Jiao C, Li S (2013) TG-FTIR characteriza- tion of volatile compounds from flame retardant polyurethane foams materials. J Anal Appl Pyrolysis 100:186-191. https :// doi.org/10.1016/j.jaap.2012.12.017 otwiera się w nowej karcie
  43. Molyneux S, Stec AA, Hull TR (2014) The effect of gas phase flame retardants on fire effluent toxicity. Polym Degrad Stab 106:36-46. https ://doi.org/10.1016/j.polym degra dstab .2013.09.013 otwiera się w nowej karcie
  44. Jiao L, Xiao H, Wang Q, Sun J (2013) Thermal degradation characteristics of rigid polyurethane foam and the volatile prod- ucts analysis with TG-FTIR-MS. Polym Degrad Stab 98:2687- 2696. https ://doi.org/10.1016/j.polym degra dstab .2013.09.032 otwiera się w nowej karcie
  45. Coleman MM, Skrovanek DJ, Hu J, Painter PC (1988) Hydrogen bonding in polymer blends. 1. FTIR studies of urethane-ether blends. Macromolecules 21:59-65. https ://doi.org/10.1021/ ma001 79a01 4 otwiera się w nowej karcie
  46. Pretsch T, Jakob I, Müller W (2009) Hydrolytic degrada- tion and functional stability of a segmented shape memory poly(ester urethane). Polym Degrad Stab 94:61-73. https ://doi. org/10.1016/j.polym degra dstab .2008.10.012 otwiera się w nowej karcie
  47. Gómez-Fernández S, Ugarte L, Peña-Rodriguez C et al (2016) The effect of phosphorus containing polyol and layered dou- ble hydroxides on the properties of a castor oil based flexible polyurethane foam. Polym Degrad Stab 132:41-51. https ://doi. org/10.1016/j.polym degra dstab .2016.03.036 otwiera się w nowej karcie
  48. Harpal Singh AKJ (2007) Effect of chemical and physical blow- ing agents on the density, cell morphology and flammability of rigid polyurethane foams. In: Polyurethane 2007 Technical Conference, Orlando, FL, pp 1-15
  49. Yang L-T, Zhao C-S, Dai C-L et al (2012) Thermal and mechan- ical properties of polyurethane rigid foam based on epoxi- dized soybean oil. J Polym Environ 20:230-236. https ://doi. org/10.1007/s1092 4-011-0381-6 otwiera się w nowej karcie
  50. Sormana JL, Meredith JC (2004) High-throughput discovery of structure-mechanical property relationships for segmented poly(urethane-urea)s. Macromolecules 37:2186-2195. https :// doi.org/10.1021/ma035 385v otwiera się w nowej karcie
  51. Somani KP, Kansara SS, Patel NK, Rakshit AK (2003) Castor oil based polyurethane adhesives for wood-to-wood bonding. otwiera się w nowej karcie
  52. Int J Adhes Adhes 23:269-275. https ://doi.org/10.1016/S0143 -7496(03)00044 -7 otwiera się w nowej karcie
  53. Cervantes-Uc JM, Espinosa JIM, Cauich-Rodríguez JV et al (2009) TGA/FTIR studies of segmented aliphatic polyure- thanes and their nanocomposites prepared with commercial montmorillonites. Polym Degrad Stab 94:1666-1677. https :// doi.org/10.1016/j.polym degra dstab .2009.06.022 otwiera się w nowej karcie
  54. Garrido MA, Font R (2015) Pyrolysis and combustion study of flexible polyurethane foam. J Anal Appl Pyrolysis 113:202-215. https ://doi.org/10.1016/j.jaap.2014.12.017 otwiera się w nowej karcie
  55. 53. Leuteritz A, Döring K-D, Lampke T, Kuehnert I (2016) Acceler- ated ageing of plastic jacket pipes for district heating. Polym Test 51:142-147. https ://doi.org/10.1016/j.polym ertes ting.2016.03.012 otwiera się w nowej karcie
  56. Yarahmadi N, Vega A, Jakubowicz I (2017) Accelerated ageing and degradation characteristics of rigid polyurethane foam. Polym Degrad Stab 138:192-200. https ://doi.org/10.1016/j.polym degra dstab .2017.03.012 otwiera się w nowej karcie
  57. Paberza A, Stiebra L, Cabulis U (2015) Photodegradation of pol- yurethane foam obtained from renewable resource-pulp produc- tion byproducts. J Renew Mater 3:19-27. https ://doi.org/10.7569/ JRM.2014.63413 8 otwiera się w nowej karcie
  58. Romanova V, Begishev V, Karmanov V et al (2002) Fourier transform Raman and Fourier transform infrared spectra of cross-linked polyurethaneurea films synthesized from solutions. J Raman Spectrosc 33:769-777. https ://doi.org/10.1002/jrs.914 otwiera się w nowej karcie
Weryfikacja:
Politechnika Gdańska

wyświetlono 42 razy

Publikacje, które mogą cię zainteresować

Meta Tagi