Transport deficiency is the molecular basis of Candida albicans resistance to antifungal oligopeptides - Publikacja - MOST Wiedzy

Wyszukiwarka

Transport deficiency is the molecular basis of Candida albicans resistance to antifungal oligopeptides

Abstrakt

(FMDP), an inhibitor of glucosamine-6-phosphate synthase, exhibited growth inhibitory activity against Candida albicans, with minimal inhibitory concentration values in the 0.05–50 mg/L range. Uptake by the peptide permeases was found to be the main factor limiting an anticandidal activity of these compounds. Di- and tripeptide containing FMDP (F2 and F3) were transported by Ptr2p/Ptr22p peptide transporters (PTR) and FMDP-containing hexa-, hepta-, and undecapeptide (F6, F7, and F11) were taken up by the oligopeptide transporters (OPT) oligopeptide permeases, preferably by Opt2p/Opt3p. A phenotypic, apparent resistance of C. albicans to FMDP-oligopeptides transported by OPT permeases was triggered by the environmental factors, whereas resistance to those taken up by the PTR system had a genetic basis. Anticandidal activity of longer FMDP-oligopeptides was strongly diminished in minimal media containing easily assimilated ammonium sulfate or L-glutamine as the nitrogen source, both known to downregulate expression of the OPT genes. All FMDP-oligopeptides tested were more active at lower pH and this effect was slightly more remarkable for peptides F6, F7, and F11, compared to F2 and F3. Formation of isolated colonies was observed inside the growth inhibitory zones induced by F2 and F3 but not inside those induced by F6, F7, and F11. The vast majority (98%) of those colonies did not originate from truly resistant cells. The true resistance of 2% of isolates was due to the impaired transport of di- and to a lower extent, tripeptides. The resistant cells did not exhibit a lower expression of PTR2, PTR22, or OPT1–3 genes, but mutations in the PTR2 gene resulting in T422H, A320S, D119V, and A320S substitutions in the amino acid sequence of Ptr2p were found.

Cytowania

  • 7

    CrossRef

  • 0

    Web of Science

  • 6

    Scopus

Cytuj jako

Pełna treść

pobierz publikację
pobrano 28 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Creative Commons: CC-BY otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuł w czasopiśmie wyróżnionym w JCR
Opublikowano w:
Frontiers in Microbiology nr 8,
ISSN: 1664-302X
Język:
angielski
Rok wydania:
2017
Opis bibliograficzny:
Schielmann M., Szweda P., Gucwa K. M., Kawczyński M., Milewska M. J., Martynow D., Morschhauser J., Milewski S.: Transport deficiency is the molecular basis of Candida albicans resistance to antifungal oligopeptides// Frontiers in Microbiology. -Vol. 8, (2017), s.2154-
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.3389/fmicb.2017.02154
Bibliografia: test
  1. Ames, B. N., Ames, G. F. L., and Young, Y. D. (1973). Illicit transport: the oligopeptide permease. Proc. Natl. Acad. Sci. U.S.A. 70, 456-458. doi: 10.1073/ pnas.70.2.456 otwiera się w nowej karcie
  2. Andruszkiewicz, R., Chmara, H., Milewski, S., and Borowski, E. (1986). Synthesis of N 3 -fumaramoyl-L-2,3-diaminopropanoic acid analogues, the irreversible inhibitors of glucosamine synthetase. Int. J. Pept. Protein Res. 27, 449-453. doi: 10.1111/j.1399-3011.1986.tb01041.x otwiera się w nowej karcie
  3. Andruszkiewicz, R., Chmara, H., Milewski, S., and Borowski, E. (1987). Synthesis and biological properties of N 3 -(4-methoxyfumaroyl)-L-2,3-diaminopropanoic acid dipeptides, a novel group of antimicrobial agents. J. Med. Chem. 30, 1715-1719. doi: 10.1021/jm00393a005 otwiera się w nowej karcie
  4. Andruszkiewicz, R., Milewski, S., Zieniawa, T., and Borowski, E. (1990). Anticandidal properties of N 3 -(4-methoxyfumaroyl)-L-2,3-diaminopropanoic acid oligopeptides. J. Med. Chem. 33, 132-135. doi: 10.1021/jm0016 3a022 otwiera się w nowej karcie
  5. Basrai, M. A., Lubkowitz, M. A., Perry, J. R., Miller, D., Krainer, E., Naider, F., et al. (1995). Cloning of a Candida albicans peptide transport gene. Microbiology 141, 1147-1156. doi: 10.1099/13500872-141-5-1147 otwiera się w nowej karcie
  6. Basrai, M. A., Zhang, H. L., Miller, D., Naider, F., and Becker, J. M. (1992). Toxicity of oxalysine and oxalysine-containing peptides against Candida albicans: regulation of peptide transport by amino acids. Microbiology 138, 2353-2362. doi: 10.1099/00221287-138-11-2353 otwiera się w nowej karcie
  7. Braun, B. R., van Het Hoog, M., d'Enfert, C., Martchenko, M., Dungan, J., Kuo, A., et al. (2005). A human-curated annotation of the Candida albicans genome. PLOS Genet. 1, 36-57. doi: 10.1371/journal.pgen. 0010001 otwiera się w nowej karcie
  8. Clinical Laboratory Standards Institute (2008). Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts, 3rd Edn. Wayne, PA: Clinical Laboratory Standards Institute. otwiera się w nowej karcie
  9. Dabas, N., and Morschhäuser, J. (2008). A transcription factor regulatory cascade controls secreted aspartic protease expression in Candida albicans. Mol. Microbiol. 69, 586-602. doi: 10.1111/j.1365-2958.2008.06297.x otwiera się w nowej karcie
  10. Desai, P. R., Thakur, A., Ganguli, D., Paul, S., Morschhäuser, J., and Bachhawat, A. K. (2011). Glutathione utilization by Candida albicans member of the oligopeptide transporter family. J. Biol. Chem. 286, 41183-41194. doi: 10.1074/ jbc.M111.272377 otwiera się w nowej karcie
  11. Doi, E., Shibata, D., and Matoba, T. (1981). Modified colorimetric ninhydrin method for peptidase assay. Anal. Biochem. 118, 173-184. doi: 10.1016/0003- 2697(81)90175-5 otwiera się w nowej karcie
  12. Dunkel, N., Hertlein, T., Franz, R., Reuß, O., Sasse, C., Schäfer, T., et al. (2013). Roles of different peptide transporters in nutrient acquisition in Candida albicans. Eukaryot. Cell 12, 520-528. doi: 10.1128/EC.00008-13 otwiera się w nowej karcie
  13. Gillum, A. M., Tsay, E. Y., and Kirsch, D. R. (1984). Isolation of the Candida albicans gene for orotidine-5'-phosphate decarboxylase by complementation of S. cerevisiae ura3 and E. coli pyrF mutations. Mol. Gen. Genet. 198, 179-182. doi: 10.1007/BF00328721 otwiera się w nowej karcie
  14. Gomez, J. A., Chen, J., Ngo, J., Hajkova, D., Yeh, I. J., Gama, V., et al. (2010). Cell- penetrating penta-peptides (CPP5s): measurement of cell entry and protein- transduction activity. Pharmaceuticals 3, 3594-3613. doi: 10.3390/ph312 otwiera się w nowej karcie
  15. Hori, M., Eguchi, J., Kakiki, K., and Misato, T. (1974). Studies on the mode of action of polyoxins. VI. Effect of polyoxin B on chitin synthesis in polyoxin- sensitive and resistant strains of Alternaria kikuchiana. J. Antibiot. 27, 260-266. doi: 10.7164/antibiotics.27.260 otwiera się w nowej karcie
  16. Island, M. D., Naider, F., and Becker, J. M. (1987). Regulation of dipeptide transport in Saccharomyces cerevisiae by micromolar amino acid concentrations. J. Bacteriol. 169, 2132-2136. doi: 10.1128/jb.169.5.2132-2136. 1987 otwiera się w nowej karcie
  17. Kenig, M., and Abraham, E. P. (1976). Antimicrobial activities and antagonists of bacilysin and anticapsin. J. Gen. Microbiol. 94, 37-45. doi: 10.1099/00221287- 94-1-37 otwiera się w nowej karcie
  18. Kingsbury, W. D., Boehm, J. C., and Mehta, R. J. (1983). Transport of antimicrobial agents using peptide carrier systems: anticandidal activity of m-fluorophenylalanine-peptide conjugates. J. Med. Chem. 26, 1725-1729. doi: 10.1021/jm00366a013 otwiera się w nowej karcie
  19. Kryński, S., and Becla, E. (1963). Bacteriology of tetaine. Acta Microbiol. Polon. 12, 131-142. otwiera się w nowej karcie
  20. Lichliter, W. D., Naider, F., and Becker, J. M. (1976). Basis for the design of anticandidal agents from studies of peptide utilization in Candida albicans. Antimicrob. Agents Chemother. 10, 483-490. doi: 10.1128/AAC.10. 3.483 otwiera się w nowej karcie
  21. Livak, K. J., and Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2 − CT method. Methods 25, 402-408. doi: 10.1006/meth.2001.1262 otwiera się w nowej karcie
  22. Lopez-Garcia, B., Ubhayasekera, W., Gallo, R. L., and Marcos, J. F. (2007). Parallel evaluation of antimicrobial peptides derived from the synthetic PAF26 and the human LL37. Biochem. Biophys. Res. Commun. 356, 107-113. doi: 10.1016/j. bbrc.2007.02.093 otwiera się w nowej karcie
  23. Martinez, P., and Ljungdahl, P. O. (2005). Divergence of Stp1 and Stp2 transcription factors in Candida albicans places virulence factors required for proper nutrient acquisition under amino acid control. Mol. Cell Biol. 25, 9435-9446. doi: 10.1128/MCB.25.21.9435-9446.2005 otwiera się w nowej karcie
  24. McCarthy, P. J., Newman, D. J., Nisbet, L. J., and Kingsbury, W. D. (1985). Relative rates of transport of peptidyl drugs by Candida albicans. Antimicrob. Agents Chemother. 28, 494-499. doi: 10.1128/AAC.28.4.494 otwiera się w nowej karcie
  25. Mehta, R. J., Kingsbury, W. D., Valenta, J., and Actor, P. (1984). Anti-Candida activity of polyoxin: example of peptide transport in yeasts. Antimicrob. Agents Chemother. 25, 373-374. doi: 10.1128/AAC.25.3.373 otwiera się w nowej karcie
  26. Milewski, S., Andruszkiewicz, R., and Borowski, E. (1988). Substrate specificity of peptide permeases in Candida albicans. FEMS Microbiol. Lett. 50, 73-78. doi: 10.1111/j.1574-6968.1988.tb02914.x otwiera się w nowej karcie
  27. Milewski, S., Andruszkiewicz, R., Kasprzak, L., Mazerski, J., Mignini, F., and Borowski, E. (1991). Mechanism of action of anticandidal dipeptides containing inhibitors of glucosamine-6-phosphate synthase. Antimicrob. Agents Chemother. 35, 36-43. doi: 10.1128/AAC.35.1.36 otwiera się w nowej karcie
  28. Moriyama, B., Gordon, L. A., McCarthy, M., Henning, S. A., Walsh, T. J., and Penzak, S. R. (2014). Emerging drugs and vaccines for Candidemia. Mycoses 57, 718-733. doi: 10.1111/myc.12265 otwiera się w nowej karcie
  29. Morschhäuser, J. (2011). Nitrogen regulation of morphogenesis and protease secretion in Candida albicans. Int. J. Med. Microbiol. 301, 390-394. doi: 10.1016/ j.ijmm.2011.04.005 otwiera się w nowej karcie
  30. Ramsey, J. D., and Flynn, N. H. (2015). Cell-penetrating peptides transport therapeutics into cells. Pharmacol. Ther. 154, 78-86. doi: 10.1016/j.pharmthera. 2015.07.003 otwiera się w nowej karcie
  31. Rapp, C., Jung, G., Kugler, M., and Loeffler, W. (1988). Rhizocticins -new phosphono-oligopeptides with antifungal activity. Justus Liebigs Ann. Chem. 1988, 655-661. doi: 10.1002/jlac.198819880707 otwiera się w nowej karcie
  32. Reuß, O., and Morschhäuser, J. (2006). A family of oligopeptide transporters is required for growth of Candida albicans on proteins. Mol. Microbiol. 60, 795-812. doi: 10.1111/j.1365-2958.2006.05136.x otwiera się w nowej karcie
  33. Reuß, O., Vik, A., Kolter, R., and Morschhäuser, J. (2004). The SAT1 flipper, an optimized tool for gene disruption in Candida albicans. Gene 341, 119-127. doi: 10.1016/j.gene.2004.06.021 otwiera się w nowej karcie
  34. Sanguinetti, M., Posteraro, B., and Lass-Flörl, C. (2015). Antifungal drug resistance among Candida species: mechanisms and clinical impact. Mycoses 58(Suppl. 2), 2-13. doi: 10.1111/myc.12330 otwiera się w nowej karcie
  35. Semlali, A., Leungb, K. P., Curta, S., and Rouabhia, M. (2011). Antimicrobial decapeptide KSL-W attenuates Candida albicans virulence by modulating its effects on Toll-like receptor, human β-defensin, and cytokine expression by engineered human oral mucosa. Peptides 32, 859-867. doi: 10.1016/j.peptides. 2011.01.020 otwiera się w nowej karcie
  36. Skwarecki, A. S., Milewski, S., Schielmann, M., and Milewska, M. J. (2016). Antimicrobial molecular nanocarrier-drug conjugates. Nanomedicine 12, 2215-2240. doi: 10.1016/j.nano.2016.06.002 otwiera się w nowej karcie
  37. Staib, F. (1965). Serum-proteins as nitrogen source for yeastlike fungi. Sabouraudia 4, 187-193. doi: 10.1080/00362176685190421 otwiera się w nowej karcie
  38. Theberge, S., Semlali, A., Alamri, A., Leung, K. P., and Rouabhia, M. (2013). otwiera się w nowej karcie
  39. C. albicans growth, transition, biofilm formation, and gene expression modulation by antimicrobial decapeptide KSL-W. BMC Microbiol. 13:246. doi: 10.1186/1471-2180-13-246 otwiera się w nowej karcie
  40. Ti, J. S., Steinfeld, A. S., Naider, F., Gulumoglu, A., Lewis, S. V., and Becker, J. M. (1980). Anticandidal activity of pyrimidine-peptide conjugates. J. Med. Chem. 23, 913-918. doi: 10.1021/jm00182a019 otwiera się w nowej karcie
  41. Wakieć, R., Gabriel, I., Prasad, R., Becker, J. M., Payne, J. W., and Milewski, S. (2008). Enhanced susceptibility to antifungal oligopeptides in yeast strains overexpressing ABC multidrug efflux pumps. Antimicrob. Agents Chemother. 52, 4057-4063. doi: 10.1128/AAC.01648-07 otwiera się w nowej karcie
  42. Xia, Z., Turner, G. C., Hwang, C.-S., Byrd, C., and Varshavsky, A. (2008). Amino acids induce peptide uptake via accelerated degradation of CUP9, the transcriptional repressor of the PTR2 peptide transporter. J. Biol. Chem. 283, 28958-28968. doi: 10.1074/jbc.M803980200 otwiera się w nowej karcie
  43. Yadan, J. C., Gonneau, M., Sarthou, P., and Le Goffic, F. (1984). Sensitivity to nikkomycin Z in Candida albicans: role of peptide permeases. J. Bacteriol. 160, 884-888. otwiera się w nowej karcie
Weryfikacja:
Politechnika Gdańska

wyświetlono 144 razy

Publikacje, które mogą cię zainteresować

Meta Tagi