Urban scene semantic segmentation using the U-Net model - Publikacja - MOST Wiedzy

Wyszukiwarka

Urban scene semantic segmentation using the U-Net model

Abstrakt

Vision-based semantic segmentation of complex urban street scenes is a very important function during autonomous driving (AD), which will become an important technology in industrialized countries in the near future. Today, advanced driver assistance systems (ADAS) improve traffic safety thanks to the application of solutions that enable detecting objects, recognising road signs, segmenting the road, etc. The basis for these functionalities is the adoption of various classifiers. This publication presents solutions utilising convolutional neural networks, such as MobileNet and ResNet50, which were used as encoders in the U-Net model to semantically segment images of complex urban scenes taken from the publicly available Cityscapes dataset. Some modifications of the encoder/decoder architecture of the U-Net model were also proposed and the result was named the MU-Net. During tests carried out on 500 images, the MU-Net model produced slightly better segmentation results than the universal MobileNet and ResNet networks, as measured by the Jaccard index, which amounted to 88.85\%. The experiments showed that the MobileNet network had the best ratio of accuracy to the number of parameters used and at the same time was the least sensitive to unusual phenomena occurring in images.

Cytowania

  • 1

    CrossRef

  • 0

    Web of Science

  • 1

    Scopus

Cytuj jako

Pełna treść

pełna treść publikacji nie jest dostępna w portalu

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Aktywność konferencyjna
Typ:
publikacja w wydawnictwie zbiorowym recenzowanym (także w materiałach konferencyjnych)
Język:
angielski
Rok wydania:
2023
Opis bibliograficzny:
Ciecholewski M.: Urban scene semantic segmentation using the U-Net model// / : , 2023,
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.15439/2023f3686
Źródła finansowania:
  • Działalność statutowa/subwencja
Weryfikacja:
Politechnika Gdańska

wyświetlono 96 razy

Publikacje, które mogą cię zainteresować

Meta Tagi