User Orientation Detection in Relation to Antenna Geometry in Ultra-Wideband Wireless Body Area Networks Using Deep Learning
Abstrakt
In this paper, the issue of detecting a user’s position in relation to the antenna geometry in ultra-wideband (UWB) off-body wireless body area network (WBAN) communication using deep learning methods is presented. To measure the impulse response of the channel, a measurement stand consisting of EVB1000 devices and DW1000 radio modules was developed and indoor static measurement scenarios were performed. It was proven that for the binary classification of user orientation, neural networks achieved accuracy that was more than 9% higher than that for the well-known threshold method. In addition, the classification of user position angles relative to the reference node was analyzed. It was proven that, using the proposed deep learning approach and the channel impulse response, it was possible to estimate the angle of the user’s position in relation to the antenna geometry. Absolute user orientation angle errors of about 4–7◦ for convolutional neural networks and of about 14–15◦ for multilayer perceptrons were achieved in approximately 85% of the cases in both tested scenarios.
Cytowania
-
0
CrossRef
-
0
Web of Science
-
0
Scopus
Autorzy (2)
Cytuj jako
Pełna treść
- Wersja publikacji
- Accepted albo Published Version
- DOI:
- Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.3390/s24072060
- Licencja
- otwiera się w nowej karcie
Słowa kluczowe
Informacje szczegółowe
- Kategoria:
- Publikacja w czasopiśmie
- Typ:
- artykuły w czasopismach
- Opublikowano w:
-
SENSORS
nr 24,
ISSN: 1424-8220 - Język:
- angielski
- Rok wydania:
- 2024
- Opis bibliograficzny:
- Urwan S., Cwalina K.: User Orientation Detection in Relation to Antenna Geometry in Ultra-Wideband Wireless Body Area Networks Using Deep Learning// SENSORS -Vol. 24,iss. 7 (2024), s.2060-
- DOI:
- Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.3390/s24072060
- Źródła finansowania:
-
- Działalność statutowa/subwencja
- Weryfikacja:
- Politechnika Gdańska
wyświetlono 57 razy
Publikacje, które mogą cię zainteresować
Deep Learning: A Case Study for Image Recognition Using Transfer Learning
- S. Erpolat Tasabat,
- O. Aydin