Virtual spring damper method for nonholonomic robotic swarm self-organization and leader following - Publikacja - MOST Wiedzy

Wyszukiwarka

Virtual spring damper method for nonholonomic robotic swarm self-organization and leader following

Abstrakt

In this paper, we demonstrate a method for self-organization and leader following of nonholonomic robotic swarm based on spring damper mesh. By self-organization of swarm robots we mean the emergence of order in a swarm as the result of interactions among the single robots. In other words the self-organization of swarm robots mimics some natural behavior of social animals like ants among others. The dynamics of two-wheel robot is derived, and a relation between virtual forces and robot control inputs is defined in order to establish stable swarm formation. Two cases of swarm control are analyzed. In the first case the swarm cohesion is achieved by virtual spring damper mesh connecting nearest neighboring robots without designated leader. In the second case we introduce a swarm leader interacting with nearest and second neighbors allowing the swarm to follow the leader. The paper ends with numeric simulation for performance evaluation of the proposed control method.

Cytowania

  • 1 3

    CrossRef

  • 1 1

    Web of Science

  • 1 3

    Scopus

Cytuj jako

Autorzy (3)

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuł w czasopiśmie wyróżnionym w JCR
Opublikowano w:
CONTINUUM MECHANICS AND THERMODYNAMICS nr 30, strony 1091 - 1102,
ISSN: 0935-1175
Język:
angielski
Rok wydania:
2018
Opis bibliograficzny:
Wiech J., Eremeev V., Giorgio I.: Virtual spring damper method for nonholonomic robotic swarm self-organization and leader following// CONTINUUM MECHANICS AND THERMODYNAMICS. -Vol. 30, iss. 5 (2018), s.1091-1102
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1007/s00161-018-0664-4
Bibliografia: test
  1. Trianni, V.: Evolutionary Swarm Robotics: Evolving Self-organising Behaviours in Groups of Autonomous Robots. Studies in Computational Intelligence, Vol. 108. Springer, Berlin (2008) otwiera się w nowej karcie
  2. Brambilla, M., Ferrante, E., Birattari, M., Dorigo, M.: Swarm robotics: a review from the swarm engineering perspective. Swarm Intell. 7(1), 1-41 (2013) otwiera się w nowej karcie
  3. Sahin, E., Spears, W. M. (Eds).: Swarm Robots. Lecture Notes in Computer Science book series (LNCS, vol. 3342). otwiera się w nowej karcie
  4. Moriconi, C. dell'Erb, R.: Social Dependability: a proposed evolution for future Robotics, Sixth IARP-IEEE/RAS-EURON Joint Workshop on Technical Challenges for Dependable Robots in Human Environments May 17-18, (2008), Pasadena, California otwiera się w nowej karcie
  5. Bossi, S., Cipollini, A., dell'Erba, R., Moriconi, C.: Robotics in Italy. Education, Research, Innovation and Economics outcomes. Enea, Rome, (2014)
  6. dell'Erba, R., Moriconi, C.: HARNESS: a robotic swarm for environmental surveillance. In 6th IARP Workshop on Risky Interventions and Environmental Surveillance (RISE). Warsaw, Poland, (2012)
  7. dell'Erba, R.: Determination of spatial configuration of an underwater swarm with minimum data. Int. J. Adv. Robotic Syst. 12(7), 97-114 (2015) otwiera się w nowej karcie
  8. Urcola, P., Riazuelo, L., Lazaro, M., Montano, L.: Cooperative navigation using environment compliant robot formations. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2008, pp. 2789-2794, IEEE (2008) otwiera się w nowej karcie
  9. Shucker, B., Bennett, J.K.: Virtual spring mesh algorithms for control of distributed robotic macrosensors. University of Colorado at Bulder, Technical Report CU-CS-996-05 (2005) otwiera się w nowej karcie
  10. Chen, Q., Veres, S.M., Wang, Y., Meng, Y.: Virtual spring, -damper mesh-based formation control for spacecraft swarms in potential fields. J. Guid. Control Dyn. 38(3), 539-546 (2015) otwiera się w nowej karcie
  11. Balkacem, K., Foudil, C.: A virtual viscoelastic based aggregation model for self-organization of swarm robots system. TAROS 2016: Towards Autonomous Robotic Systems, pp. 202-213, Springer (2016)
  12. Della Corte, A., Battista, A., dell'Isola, F.: Referential description of the evolution of a 2D swarm of robots interacting with the closer neighbors: perspectives of continuum modeling via higher gradient continua. Int. J. Non-Linear Mech. 80, 209-220 (2016) otwiera się w nowej karcie
  13. Battista, A. et al.: Numerical investigation of a particle system compared with first and second gradient continua: Deformation and fracture phenomena. Math. Mech. Solids, https://doi.org/10.1177/1081286516657889 (2016) otwiera się w nowej karcie
  14. Della Corte, A., Battista, A., dell'Isola, F., Giorgio, I.: Modeling deformable bodies using discrete systems with centroid- based propagating interaction: fracture and crack evolution. In: Mathematical Modelling in Solid Mechanics, pp. 59-88. Springer Singapore, (2017) otwiera się w nowej karcie
  15. Pideri, C., Seppecher, P.: A second gradient material resulting from the homogenization of an heterogeneous linear elastic medium. Contin. Mech. Thermodyn. 9(5), 241-257 (1997) otwiera się w nowej karcie
  16. Samuel, F., Sab, K.: Finite-deformation second-order micromorphic theory and its relations to strain and stress gradient models. Math. Mech. Solids. (2017). https://doi.org/10.1177/1081286517720844 otwiera się w nowej karcie
  17. Steigmann, D.J.: Theory of elastic solids reinforced with fibers resistant to extension, flexure and twist. Int. J. Non-Lin. Mech. 47, 742-743 (2012) otwiera się w nowej karcie
  18. Turco, E., dell'Isola, F., Cazzani, A., Rizzi, N.L.: Hencky-type discrete model for pantographic structures: numerical comparison with second gradient continuum models. ZAMP 67(4), 1-28 (2016) otwiera się w nowej karcie
  19. Alibert, J.-J., Seppecher, P., dell'Isola, F.: Truss modular beams with deformation energy depending on higher displacement gradients. Math. Mech. Solids 8(1), 51-73 (2003) otwiera się w nowej karcie
  20. Buttà, P., De Masi, A., Rosatelli, E.: Slow motion and metastability for a nonlocal evolution equation. J. Stat. Phys. 112(3-4), 709-764 (2003) otwiera się w nowej karcie
  21. Cuomo, M., dell'Isola, F., Greco, L., Rizzi, N.L.: First versus second gradient energies for planar sheets with two families of inextensible fibres: investigation on deformation boundary layers, discontinuities and geometrical instabilities. Compos. Part B Eng. 115, 423-448 (2017) otwiera się w nowej karcie
  22. dell'Isola, F., Cuomo, M., Greco, L., Della Corte, A.: Bias extension test for pantographic sheets: numerical simulations based on second gradient shear energies. J. Eng. Math. 103(1), 127-157 (2017) otwiera się w nowej karcie
  23. Giergiel, J.,Żylski, W.: Description of motion of a mobile robot by Maggie's equations. J. Theor. Appl. Mech. 43(3), 511-521 (2005)
  24. Gutowski R.: Mechanika Analityczna, 1971, PWN, Warszawa 25. Madenci, E., Oterkus, E.: Peridynamic Theory and Its Applications. Springer, New York (2014)
  25. Born, M., Huang, K.: Dynamical Theory of Crystal Lattices. Clarendon Press, Oxford (1988)
  26. Slepyan, L.I.: Models and Phenomena in Fracture Mechanics. Springer, Berlin (2002) otwiera się w nowej karcie
  27. Mishuris, G.S., Movchan, A.B., Slepyan, L.I.: Waves and fracture in an inhomogeneous lattice structure. Waves Random Complex Media 17, 409-428 (2007) otwiera się w nowej karcie
  28. Mishuris, G.S., Movchan, A.B., Slepyan, L.I.: Dynamics of a bridged crack in a discrete lattice. Q. J. Mech. Appl. Math. 61, 151-160 (2008) otwiera się w nowej karcie
  29. Slepyan, L.I.: Wave radiation in lattice fracture. Acoust. Phys. 56(6), 962-971 (2010) otwiera się w nowej karcie
Weryfikacja:
Politechnika Gdańska

wyświetlono 39 razy

Publikacje, które mogą cię zainteresować

Meta Tagi