Nie znaleźliśmy wyników w zadanych kryteriach!
Ale mamy wyniki w innych katalogach.wyświetlamy 1000 najlepszych wyników Pomoc
Wyniki wyszukiwania dla: POLYURETHANE, POLYLACTIDE, TISSUE ENGINEERING, SKIN SCAFFOLD
-
Microporous Polyurethane Thin Layer as a Promising Scaffold for Tissue Engineering
PublikacjaThe literature describes that the most efficient cell penetration takes place at 200–500 µm depth of the scaffold. Many different scaffold fabrication techniques were described to reach these guidelines. One such technique is solvent casting particulate leaching (SC/PL). The main advantage of this technique is its simplicity and cost efficiency, while its main disadvantage is the scaffold thickness, which is usually not less than...
-
Ciprofloxacin-modified degradable hybrid polyurethane-polylactide porous scaffolds developed for potential use as an antibacterial scaffold for regeneration of skin
PublikacjaThe aim of the performed study was to fabricate an antibacterial and degradable scaffold that may be used in the field of skin regeneration. To reach the degradation criterion for the biocompatible polyurethane (PUR), obtained by using amorphous α,ω-dihydroxy(ethylene-butylene adipate) macrodiol (PEBA), was used and processed with so-called “fast-degradable” polymer polylactide (PLA) (5 or 10 wt %). To meet the antibacterial requirement...
-
Ciprofloxacin – Modified Degradable Hybrid Polyurethane-Polylactide Porous Scaffolds Developed for Potential Use as an Antibacterial Scaffold for Regeneration of Skin
Publikacja -
Green Polymer Nanocomposites for Skin Tissue Engineering
PublikacjaFabrication of an appropriate skin scaffold needs to meet several standards related to the mechanical and biological properties. Fully natural/green scaffolds with acceptable biodegradability, biocompatibility, and physiological properties quite often suffer from poor mechanical properties. Therefore, for appropriate skin tissue engineering and to mimic the real functions, we need to use synthetic polymers and/or additives as complements...
-
The Influence of PEG on Morphology of Polyurethane Tissue Scaffold
PublikacjaIn this study, polyurethanes (PU) were synthesized from oligomeric dihydroxy(etylene-butylene adipate), poly(ethylene glycol) (PEG), hexamethylene diisocyanate (HDI), 1,4-butanediol (BDO) as chain extender and stannous octoate as catalyst. PEG due to its hydrophilic character influences physical and chemical properties of PU. For testing were used PU having the following weigh contents of PEG: 0%, 7%, and 14%. Porous scaffolds...
-
ASCORBIC ACID IN POLYURETHANE SYSTEMS FOR TISSUE ENGINEERING
PublikacjaThe introduction of the paper was devoted to the main items of tissue engineering (TE) and the way of porous structure obtaining as scaffolds. Furthermore, the significant role of the scaffold design in TE was described. It was shown, that properly designed polyurethanes (PURs) find application in TE due to the proper physicochemical, mechanical and biological properties. Then the use of L-ascorbic acid (L-AA) in PUR systems for...
-
The Influence of PEG on Morphology of Polyurethane Tissue Scaffold
Publikacja -
Fabrication of polyurethane and polyurethane based composite fibers by the electrospinning technique for soft tissue engineering of cardiovascular system
PublikacjaElectrospinning is the unique technique, which provides forming of polymeric scaffolds for soft tissue engineering, which include tissue scaffolds for soft tissues of cardiovascular system. Such artificial soft tissues of cardiovascular system may possess mechanical properties comparable to native vascular tissues. Electrospinning technique gives the opportu nity to form fibres with nm- to μm-scale in diameter. The arrangement...
-
Porosity and swelling properties of novel polyurethane–ascorbic acid scaffolds prepared by different procedures for potential use in bone tissue engineering
PublikacjaIn this work, a novel polyurethane (PU) system based on poly(ethylene-butylene) adipate diol, 1,6-hexamethylene diisocyanate, 1,4-butanediol, and ascorbic acid was used to prepare scaffolds with potential applications in bone tissue engineering. Two fabrication methods to obtain porous materials were chosen: phase separation (PS)/salt particle leaching (PL) and solvent casting (SC)/salt PL. The calculated porosity demonstrated...
-
Polyurethane based hybrid ciprofloxacin-releasing wound dressings designed for skin engineering purpose
PublikacjaPurpose Even in the 21st century, chronic wounds still pose a major challenge due to potentially inappropriate treatment options, so the latest wound dressings are hybrid systems that enable clinical management, such as a hybrid of hydrogels, antibiotics and polymers. These wound dressings are mainly used for chronic and complex wounds, which can easily be infected by bacteria. Materials and methods Six Composite Porous Matrices...