Wyniki wyszukiwania dla: MODEL ENSEMBLING - MOST Wiedzy

Wyszukiwarka

Wyniki wyszukiwania dla: MODEL ENSEMBLING

Filtry

wszystkich: 6
wybranych: 5

wyczyść wszystkie filtry


Filtry wybranego katalogu

  • Kategoria

  • Rok

  • Opcje

wyczyść Filtry wybranego katalogu niedostępne

Wyniki wyszukiwania dla: MODEL ENSEMBLING

  • Ensembling noisy segmentation masks of blurred sperm images

    Background: Sperm tail morphology and motility have been demonstrated to be important factors in determining sperm quality for in vitro fertilization. However, many existing computer-aided sperm analysis systems leave the sperm tail out of the analysis, as detecting a few tail pixels is challenging. Moreover, some publicly available datasets for classifying morphological defects contain images limited only to the sperm head. This...

    Pełny tekst do pobrania w portalu

  • Robust Object Detection with Multi-input Multi-output Faster R-CNN

    Publikacja

    Recent years have seen impressive progress in visual recognition on many benchmarks, however, generalization to the out-of-distribution setting remains a significant challenge. A state-of-the-art method for robust visual recognition is model ensembling. However, recently it was shown that similarly competitive results could be achieved with a much smaller cost, by using multi-input multi-output architecture (MIMO). In this work,...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Robust Object Detection with Multi-input Multi-output Faster R-CNN

    Publikacja

    Recent years have seen impressive progress in visual recognition on many benchmarks, however, generalization to the out-of-distribution setting remains a significant challenge. A state-of-the-art method for robust visual recognition is model ensembling. However, recently it was shown that similarly competitive results could be achieved with a much smaller cost, by using multi-input multi-output architecture (MIMO). In this work,...

    Pełny tekst do pobrania w portalu

  • Selected Technical Issues of Deep Neural Networks for Image Classification Purposes

    In recent years, deep learning and especially Deep Neural Networks (DNN) have obtained amazing performance on a variety of problems, in particular in classification or pattern recognition. Among many kinds of DNNs, the Convolutional Neural Networks (CNN) are most commonly used. However, due to their complexity, there are many problems related but not limited to optimizing network parameters, avoiding overfitting and ensuring good...

    Pełny tekst do pobrania w portalu

  • Robust and Efficient Machine Learning Algorithms for Visual Recognition

    Publikacja

    - Rok 2022

    In visual recognition, the task is to identify and localize all objects of interest in the input image. With the ubiquitous presence of visual data in modern days, the role of object recognition algorithms is becoming more significant than ever and ranges from autonomous driving to computer-aided diagnosis in medicine. Current models for visual recognition are dominated by models based on Convolutional Neural Networks (CNNs), which...

    Pełny tekst do pobrania w portalu