Wyniki wyszukiwania dla: antennas
-
Hybrid technique for the analysis of circular waveguide junctions loaded with ferrite posts
PublikacjaThis study presents a hybrid technique for the analysis of circular waveguide junctions loaded with axially symmetrical ferrite posts of irregular shape. The method is based on a combination of the finite-difference frequency- domain technique with a mode-matching technique. The proposed approach is validated by comparing the presented results with numerical ones obtained from commercial software. The application of a cylindrical...
-
Rapid multi-objective antenna design using point-by-point Pareto set identification and local surrogate models
PublikacjaAntenna design is inherently a multicriterial problem.Determination of the best possible tradeoffs between conflicting objectives (a so-called Pareto front), such as reflection response, gain, and antenna size, is indispensable from the designer’s point of view, yet challenging when high-fidelity electromagnetic (EM) simulations are utilized for performance evaluation. Here, a novel and computationally...
-
Rapid multi-objective design optimisation of compact microwave couplers by means of physics-based surrogates
PublikacjaThe authors introduce a methodology for fast multi-objective design optimisation of miniaturised microwave couplers. The approach exploits the surrogate-based optimisation paradigm with an underlying low-fidelity model constructed from an equivalent circuit of the structure under consideration, corrected through implicit and frequency space mapping. A fast prediction tool obtained this way is subsequently optimised by a multi-objective...
-
Rapid simulation-driven design of miniaturised dual-band microwave couplers by means of adaptive response scaling
PublikacjaOne of the major challenges in the design of compact microwave structures is the necessity of simultaneous handling of several objectives and the fact that expensive electromagnetic (EM) analysis is required for their reliable evaluation. Design of multi-band circuits where performance requirements are to be satisfied for several frequencies at the same time is even more difficult. In this work, a computationally efficient design...
-
Efficient Multi-Objective Simulation-Driven Antenna Design Using Co-Kriging
PublikacjaA methodology for fast multi-objective antenna optimization is presented. Our approach is based on response surface approximation (RSA) modeling and variable-fidelity electromagnetic (EM) simulations. In the design process, a computationally cheap RSA surrogate model constructed from sampled coarse-discretization EM antenna simulations is optimized using a multi-objective evolutionary algorithm. The initially determined Pareto...
-
GPU-Accelerated Finite-Element Matrix Generation for Lossless, Lossy, and Tensor Media [EM Programmer's Notebook]
PublikacjaThis paper presents an optimization approach for limiting memory requirements and enhancing the performance of GPU-accelerated finite-element matrix generation applied in the implementation of the higher-order finite-element method (FEM). It emphasizes the details of the implementation of the matrix-generation algorithm for the simulation of electromagnetic wave propagation in lossless, lossy, and tensor media. Moreover, the impact...
-
Simulation-Driven Design of Microstrip Antenna Subarrays
PublikacjaA methodology for computationally efficient simulation-driven design of microstrip antenna subarrays is presented. Our approach takes into account the effect of the feed (e.g., a corporate network) on the subarray side lobe level and allows adjusting both radiation and reflection responses of the structure under design within a single automated process. This process is realized as surrogate-based optimization that produces designs...
-
Coplanar Waveguide-Fed Broadband Microwave Devices with (or without) a Thin Dielectric Substrate for Use in Flexible Electronic Systems
PublikacjaTwo examples of microwave devices, fed by a coplanar waveguide and realized on a thin substrate (or without such a substrate), are employed to investigate the influence of devices’ curvatures and the proximity of different materials on their parameters. To perform the tests, a broadband antenna and a low-pass filter are chosen. A feeding coplanar waveguide is realized on a dielectric material brick attached to an SMA connector...
-
An Analysis of Elliptical-Rectangular Multipatch Structure on Dielectric-Coated Confocal and Nonconfocal Elliptic Cylinders
PublikacjaA rigorous analysis of the resonance frequency problem of an elliptical-rectangular microstrip structure mounted on dielectric-coated elliptic conducting cylinder, with electrically small radius, is investigated in this paper. A full-wave analysis and a moment-method calculation are employed. The analysis is carried out considering the expansion of the field as a series of Mathieu functions. The complex resonance frequencies of...
-
Measurement Stand and Methodology for Research of the Off-Body and Body-to-Body Radio Channels in WBANs with Different Diversity Schemes
PublikacjaThe concept of an experimental test bed for system loss and channel impulse response measurements for off-body and body-to-body radio channels in wireless body area networks (WBANs) is fully described. The possible measurement scenarios that may occur in investigation of off-body and body-to-body channels are classified and described in detail. Additionally, an evaluation is provided of the standard and expanded uncertainties of...
-
A Conformal Circularly Polarized Series-Fed Microstrip Antenna Array Design
PublikacjaA conformal circularly polarized series-fed microstrip array design for broadside radiation is presented. The array aperture under design is conformal to a cylindrical surface of a given radius. The approach we present primarily addresses focusing of the circularly polarized major lobe of the conformal array by proper dimensioning of the aperture spacings. The proposed analytical models yield the values of the element spacings...
-
Bandwidth-size design trade-offs for compact spline-parameterised patch couplers by means of electromagnetic-driven multi-objective optimisation
PublikacjaBroad bandwidth and small size are the key performance figures for contemporary microwave couplers. These requirements are conflicting, i.e. improvement of one generally leads to degradation of the other assuming fixed topology of the circuit at hand. From a designer's perspective, the knowledge about available design trade-offs is indispensable as it permits for tailoring the circuit for particular applications as well as comparing...
-
Compact Dual-Polarized Corrugated Horn Antenna for Satellite Communications
PublikacjaIn this paper, a structure and design procedure of a novel compact dual-polarized corrugated horn antenna with high gain and a stable phase center for satellite communication is presented. The antenna incorporates an Ortho-Mode Transducer (OMT), a mode converter, and a corrugated structure. The compact OMT section is designed to be fed by standard WR-75 waveguides. The proposed compact design utilizes only ten corrugated slots...
-
Variable-fidelity response feature surrogates for accelerated statistical analysis and yield estimation of compact microwave components
PublikacjaAccounting for manufacturing tolerances is an essential part of a reliable microwave design process. Yet, quantification of geometry and/or material parameter uncertainties is challenging at the level of full-wave electromagnetic (EM) simulation models. This is due to inherently high cost of EM analysis and massive simulations necessary to conduct the statistical analysis. Here, a low-cost and accurate yield estimation procedure...
-
Expedited Acquisition of Database Designs for Reduced-Cost Performance-Driven Modeling and Rapid Dimension Scaling of Antenna Structures
PublikacjaFast replacement models have been playing an increasing role in high-frequency electronics, including the design of antenna structures. Their role is to improve computational efficiency of the procedures that normally entail large numbers of expensive full-wave electromagnetic (EM) simulations, e.g., parametric optimization or uncertainty quantification. Recently introduced performance-driven modeling methods, such as the nested...
-
A Self-Adaptive Complex Root Tracing Algorithm for the Analysis of Propagation and Radiation Problem
PublikacjaAn improved complex root tracing algorithm for radiation and propagation issues is proposed. The approach is based on a self-adaptive discretization of Cauchy’s argument principle for a C × R space and requires a reduced number of function calls in comparison to other procedures presented in the literature. A few different examples concerning propagation and radiation problems have been considered to verify the validity and efficiency...
-
Accelerated Parameter Tuning of Antenna Structures by Means of Response Features and Principal Directions
PublikacjaPopularity of numerical optimization has been steadily on the rise in the design of modern antenna systems. Resorting to mathematically rigorous parameter tuning methods is a matter of practical necessity as interactive techniques (e.g., parameter sweeping) are no longer adequate when handling several performance figures over multi-dimensional parameter spaces. The most common design scenarios involve local tuning since decent...
-
Robust Parameter Tuning of Antenna Structures by Means of Design Specification Adaptation
PublikacjaParameter tuning through numerical optimization has become instrumental in the design of high-performance antenna systems. Yet, practical optimization faces several major challenges, including high cost of massive evaluations of antenna characteristics, normally involving full-wave electromagnetic (EM) analysis, large numbers of adjustable variables, the shortage of reasonable initial solutions in the case of topologically complex...
-
Low-cost data-driven modelling of microwave components using domain confinement and PCA-based dimensionality reduction
PublikacjaFast data-driven surrogate models can be employed as replacements of computationally demanding full-wave electromagnetic simulations to facilitate the microwave design procedures. Unfortunately, practical application of surrogate modelling is often hindered by the curse of dimensionality and/or considerable nonlinearity of the component characteristics. This paper proposes a simple yet reliable approach to cost-efficient modelling...
-
Communication Model Order Reduction in Hybrid Methods Involving Generalized Impedance Matrix
PublikacjaA novel strategy for the efficient analysis of frequency-domain scattering electromagnetic problems in open and closed domains is presented. A fully automatic model-order reduction technique, called the enhanced reduced-basis method, is applied to increase the efficiency of the hybrid approach, which combines the finite-element and mode-matching methods. Numerical tests show that the proposed algorithm yields reliable and highly...
-
Automatic Correction of Non-Anechoic Antenna Measurements Using Complex Morlet Wavelets
PublikacjaReal-world performance of antennas is normally tested in anechoic chambers (ACs). Alternatively, experimental validation can be performed in non-anechoic environments and refined in the course of post-processing. Unfortunately, the existing methods are difficult to setup and prone to failure. In this letter, a wavelet-based framework for correction of non-anechoic antenna measurements has been proposed. The method involves automatic...
-
Hybrid Technique Combining the FDTD Method and Its Convolution Formulation Based on the Discrete Green's Function
PublikacjaIn this letter, a technique combining the finite-difference time-domain (FDTD) method and its formulation based on the discrete Green's function (DGF) is presented. The hybrid method is applicable to inhomogeneous dielectric structures that are mutually coupled with wire antennas. The method employs the surface equivalence theorem in the discrete domain to separate the problem into a dielectric domain simulated using the FDTD method...
-
Simulation-Based Design of Microstrip Linear Antenna Arrays Using Fast Radiation Response Surrogates
PublikacjaFast yet accurate technique for simulation-based design of linear arrays of microstrip patch antennas is presented. Our technique includes: (i) optimization of the corrected array factor of the antenna array under design for a phase excitation taper resulting in reduced side lobes; (ii) simulation-driven optimization of the array element for element dimensions resulting in matching at and about operational frequency, and (iii)...
-
A New Expression for the 3-D Dyadic FDTD-Compatible Green's Function Based on Multidimensional Z-Transform
PublikacjaIn this letter, a new analytic expression for the time-domain discrete Green's function (DGF) is derived for the 3-D finite-difference time-domain (FDTD) grid. The derivation employs the multidimensional Z-transform and the impulse response of the discretized scalar wave equation (i.e., scalar DGF). The derived DGF expression involves elementary functions only and requires the implementation of a single function in the multiple-precision...
-
Pin-on-Substrate Gap Waveguide: An Extremely Low-Cost Realization of High-Performance Gap Waveguide Components
PublikacjaConsidering the limitations of currently available technologies for the realization of microwave components and antennas, a trade-off between different factors including the efficiency and fabrication cost is required. The main objective of this letter is to propose a novel method for the realization of gap waveguides (GWGs) that take advantage of conventional PCB fabrication technology, thus are low cost and light weight. Moreover,...
-
Expedited EM-driven multi-objective antenna design in highly-dimensional parameter spaces
PublikacjaA technique for low-cost multi-objective optimization of antennas in highly-dimensional parameter spaces is presented. The optimization procedure is expedited by exploiting fast surrogate models, including coarse-discretization EM antenna simulations and response surface approximations (RSA). The latter is utilized to yield an initial set of Pareto non-dominated designs which are further refined using response correction methods....
-
Multi-objective antenna design by means of sequential domain patching
PublikacjaA simple yet robust methodology for rapid multiobjective design optimization of antenna structures has been presented. The key component of our approach is sequential domain patching of the design space which is a stencil-based search that aims at creating a path that connects the extreme Pareto-optimal designs, obtained by means of single-objective optimization runs. The patching process yields the initial approximation of the...
-
Multi-Beam Antenna for Ka-Band CubeSat Connectivity Using 3-D Printed Lens and Antenna Array
PublikacjaIn this paper, the design of a passive multi-beam lens antenna is proposed for the CubeSat space communication system as an alternative application of a 2-D microstrip antenna array that has originally been designed for a 39 GHz 5 G MU-MIMO system. The half-ellipsoid lens is 3-D printed using stereolithography (SLA) technology. The antenna prototype is capable of selecting the main beam between 16 different directions with a gain...
-
Objective relaxation algorithm for reliable simulation-driven size reduction of antenna structure
PublikacjaThis letter investigates reliable size reduction of antennas through electromagnetic-driven optimization. It is demonstrated that conventional formulation of the design task by direct footprint miniaturization with imposing constraints on electrical performance parameters may not lead to optimum results. The reason is that—in a typical antenna structure—only a few geometry parameters explicitly determine the antenna footprint,...
-
Low-Cost Data-Driven Surrogate Modeling of Antenna Structures by Constrained Sampling
PublikacjaFull-wave electromagnetic (EM) analysis has become one of the major design tools for contemporary antenna structures. Although reliable, it is computationally expensive which makes automated simulation-driven antenna design (e.g., parametric optimization) difficult. This difficulty can be alleviated by utilization of fast and accurate replacement models (surrogates). Unfortunately, conventional data-driven modeling of antennas...
-
Simple 60 GHz Switched Beam Antenna for 5G Millimeter-Wave Applications
PublikacjaA new 60 GHz band single-input switched beam antenna is proposed for the fifth-generation (5G) millimeter-wave network applications. The presented design is capable of electronically switching the main beam in two different directions via a proposed microstrip-line-to-slotline single-pole dual-throw (SPDT) switch based on commercially available p-i-n diodes. The antenna is fabricated in a low-cost printed circuit board process...
-
Absorbing Boundary Conditions Derived Based on Pauli Matrices Algebra
PublikacjaIn this letter, we demonstrate that a set of absorbing boundary conditions (ABCs) for numerical simulations of waves, proposed originally by Engquist and Majda and later generalized by Trefethen and Halpern, can alternatively be derived with the use of Pauli matrices algebra. Hence a novel approach to the derivation of one-way wave equations in electromagnetics is proposed. That is, the classical wave equation can be factorized...
-
A Series-Inclined-Slot-Fed Circularly Polarized Antenna for 5G 28-GHz Applications
PublikacjaThis letter presents the design of a single-point-fed, geometrically simple circularly polarized (CP) antenna for 28 GHz Ka-band applications. The proposed antenna is based on a straight microstrip line printed on one side and coupled with the nearly square patches through a 45-degree inclined V-shape slot aperture on the other side. In order to generate circular polarization, the fundamental radiating mode is degenerated at a...
-
Scattering in a section of ferrite coupled microstrip lines: theory and application in nonreciprocal devices
PublikacjaPrzeprowadzono analizę pełnofalową sekcji sprzężonych ferrytowych linii mikropaskowych wykorzystującą w rozwinięciu pola em fale prowadzone w izotropowych złączach wejściowych sekcji oraz jej fajl ferrytowych. W wyniku określono macierz S sekcji. Przeprowadzono modelowanie własności rozproszenia układu oraz symulację parametrów transmisyjnych układów niewzajemnych projektowanych z wykorzystaniem proponowanego układu ferrytowego.
-
Isolator using a ferrite-coupled-lines gyrator
PublikacjaPrzedstawiono koncepcję nowego typu gyratora wykonywanego poprzez zwarcie lub rozwarcie ferrytowych linii sprzężonych (FCL). Redukując w taki sposób macierz rozproszenia (S) sekcji FCL określono macierz S gyratora oraz procedurę jego projektowania. Poprzez odpowiednie wprowadzenie warstwy rezystywnej do układu gyratora zaprojektowano nowy układ isolatora typu FCL oraz podano metodykę jego projektowania. Koncepcje proponowanych...
-
Simple 60 GHz Switched Beam Antenna for 5G Millimeter-Wave Applications
Publikacja -
On the approximation of the UWB dipole elliptical arms with stepped-edge polygon
PublikacjaA simple method of approximation of the ellipticalpatch with stepped-edge polygon is proposed as an introductionto wider studies over the planar ultrawideband (UWB) antennas.The general idea is to replace the elliptical patch with an equivalentpolygonal patch, with minimum loss in the performance. Theprinciples of the proposed method are presented in this letter, aswell as the results of performed numerical studies and its experimentalverification....
-
Fast implementation of FDTD-compatible green's function on multicore processor
PublikacjaIn this letter, numerically efficient implementation of the finite-difference time domain (FDTD)-compatible Green's function on a multicore processor is presented. Recently, closed-form expression of this discrete Green's function (DGF) was derived, which simplifies its application in the FDTD simulations of radiation and scattering problems. Unfortunately, the new DGF expression involves binomial coefficients, whose computations...
-
Accuracy, Memory and Speed Strategies in GPU-based Finite-Element Matrix-Generation
PublikacjaThis paper presents strategies on how to optimize GPU-based finite-element matrix-generation that occurs in the finite-element method (FEM) using higher order curvilinear elements. The goal of the optimization is to increase the speed of evaluation and assembly of large finite-element matrices on a single GPU (Graphics Processing Unit) while maintaining the accuracy of numerical integration at the desired level. For this reason,...
-
Implementation of FDTD-Compatible Green's Function on Graphics Processing Unit
PublikacjaIn this letter, implementation of the finite-difference time domain (FDTD)-compatible Green's function on a graphics processing unit (GPU) is presented. Recently, closed-form expression for this discrete Green's function (DGF) was derived, which facilitates its applications in the FDTD simulations of radiation and scattering problems. Unfortunately, implementation of the new DGF formula in software requires a multiple precision...
-
A Broadband Circularly Polarized Wide-Slot Antenna with a Miniaturized Footprint
PublikacjaThis letter presents a novel and simple feeding technique for exciting orthogonal components in a wide-slot antenna. In this technique, a rectangular bracket-shape parasitic strip is placed at the open end of the straight microstrip line to excite the fundamental horizontal and vertical components of the circular polarization (CP). The proposed technique—when employed in conjunction with the asymmetrical geometry of coplanar waveguide...
-
Block Conjugate Gradient Method with Multilevel Preconditioning and GPU Acceleration for FEM Problems in Electromagnetics
PublikacjaIn this paper a GPU-accelerated block conjugate gradient solver with multilevel preconditioning is presented for solving large system of sparse equations with multiple right hand-sides (RHSs) which arise in the finite-element analysis of electromagnetic problems. We demonstrate that blocking reduces the time to solution significantly and allows for better utilization of the computing power of GPUs, especially when the system matrix...
-
Reliable Greedy Multipoint Model-Order Reduction Techniques for Finite-Element Analysis
PublikacjaA new greedy multipoint model-order reduction algorithm for fast frequency-domain finite-element method simulations of electromagnetic problems is proposed. The location of the expansion points and the size of the projection basis are determined based on a rigorous error estimator. Compared to previous multipoint methods, the quality of the error estimator is significantly improved by ensuring the orthogonality of the projection...
-
Implicit Space Mapping for Variable-Fidelity EM-Driven Design of Compact Circuits
PublikacjaSpace mapping (SM) belongs to the most successful surrogate-based optimization (SBO) methods in microwave engineering. Among available SM variations, implicit SM (ISM) is particularly attractive due to its simplicity and separation of extractable surrogate model parameters and design variables of the circuit/system at hand. Unlike other SM approaches, ISM exploits a set of preassigned parameters to align the surrogate with the...
-
Electromagnetic curtain effect and tunneling properties of multilayered periodic structures
PublikacjaArtykuł przedstawia analizę rozpraszania fali elektromagnetycznej na wielowarstwowych strukturach periodycznych. W analizowanych strukturach zaobserwowano efekt tunelowania fali oraz efekt przestrajania pasm zaporowych/przepustowych (efekt kurtyny elektromagnetycznej)
-
a novel modified star-triangular fractal (MSTF) monopole antenna for super-wideband applications
Publikacja -
a novel modified star-triangular fractal (MSTF) monopole antenna for super-wideband applications
Publikacja -
A New Type of Macro-Elements for Efficient Two-Dimensional FEM Analysis
PublikacjaThis letter deals with a model order reduction technique applicable for driven and eigenvalue problems solved using the finite element method (FEM). It allows one to efficiently compute electromagnetic parameters of structures comprising small features that require strong local mesh refinement. The subdomains of very fine mesh are separated from the global domain as so called macro-elements that undergo model reduction. The macro-elements...
-
Tuning a Hybrid GPU-CPU V-Cycle Multilevel Preconditioner for Solving Large Real and Complex Systems of FEM Equations
PublikacjaThis letter presents techniques for tuning an accelerated preconditioned conjugate gradient solver with a multilevel preconditioner. The solver is optimized for a fast solution of sparse systems of equations arising in computational electromagnetics in a finite element method using higher-order elements. The goal of the tuning is to increase the throughput while at the same time reducing the memory requirements in order to allow...
-
Single-Anchor Indoor Localization Using ESPAR Antenna
PublikacjaIn this paper a new single-anchor indoor localization concept employing Electronically Steerable Parasitic Array Radiator (ESPAR) antenna has been proposed. The new concept uses a simple fingerprinting algorithm adopted to work with directional main beam and narrow minimum radiation patterns of ESPAR antenna that scans 360° area around the base station, while the signal strength received from a mobile terminal is being recorded...