Filtry
wszystkich: 264
Wyniki wyszukiwania dla: SURROGATE MODEL
-
Tolerance Optimization of Antenna Structures by Means of Response Feature Surrogates
PublikacjaFabrication tolerances and other types of uncertainties, e.g., the lack of precise knowledge of material parameters, have detrimental effects on electrical and field performance of antenna systems. In the case of input characteristics these are particularly noticeable for narrow- and multi-band antennas where deviations of geometry parameters from their nominal values lead to frequency shifts of the operating frequency bands. Improving...
-
Tolerance-Aware Multi-Objective Optimization of Antennas by Means of Feature-Based Regression Surrogates
PublikacjaAssessing the immunity of antenna design to fabrication tolerances is an important consideration, especially when the manufacturing process has not been predetermined. At the same time, the antenna parameter tuning should be oriented toward improving the performance figures pertinent to both electrical (e.g., input matching) and field properties (e.g., axial ratio bandwidth) as much as possible. Identification of available trade-offs...
-
Rapid optimization of compact microwave passives using kriging surrogates and iterative correction
PublikacjaDesign of contemporary microwave components is—in a large part—based on full-wave electromagnetic (EM) simulation tools. The primary reasons for this include reliability and versatility of EM analysis. In fact, for many microwave structures, notably compact components, EM-driven parameter tuning is virtually imperative because traditional models (analytical or network equivalents) are unable to account for the cross-coupling effects,...
-
Low-cost multi-objective optimization and experimental validation of UWB MIMO antenna
PublikacjaPurpose–The purpose of this paper is to validate methodologies for expedited multi-objective designoptimization of complex antenna structures both numerically and experimentally.Design/methodology/approach–The task of identifying the best possible trade-offs between theantenna size and its electrical performance is formulated as multi-objective optimization problem.Algorithmic frameworks are described for finding Pareto-optimal...
-
Variable Resolution Machine Learning Optimization of Antennas Using Global Sensitivity Analysis
PublikacjaThe significance of rigorous optimization techniques in antenna engineering has grown significantly in recent years. For many design tasks, parameter tuning must be conducted globally, presenting a challenge due to associated computational costs. The popular bio-inspired routines often necessitate thousands of merit function calls to converge, generating prohibitive expenses whenever the design process relies on electromagnetic...
-
Global Miniaturization of Broadband Antennas by Prescreening and Machine Learning
PublikacjaThe development of contemporary electronic components, particularly antennas, places significant emphasis on miniaturization. This trend is driven by the emergence of technologies such as mobile communications, the internet of things, radio-frequency identification, and implantable devices. The need for small size is accompanied by heightened demands on electrical and field properties, posing a considerable challenge for antenna...
-
Computationally-Efficient Statistical Design and Yield Optimization of Resonator-Based Notch Filters Using Feature-Based Surrogates
PublikacjaModern microwave devices are designed to fulfill stringent requirements pertaining to electrical performance, which requires, among others, a meticulous tuning of their geometry parameters. When moving up in frequency, physical dimensions of passive microwave circuits become smaller, making the system performance increasingly susceptible to manufacturing tolerances. In particular, inherent inaccuracy of fabrication processes affect...
-
Rapid Yield Optimization of Miniaturized Microwave Passives by Response Features and Variable-Fidelity EM Simulations
PublikacjaThe operation of high-frequency devices, including microwave passive components, can be impaired by fabrication tolerances but also incomplete knowledge concerning operating conditions (temperature, input power levels) and material parameters (e.g., substrate permittivity). Although the accuracy of manufacturing processes is always limited, the effects of parameter deviations can be accounted for in advance at the design phase...
-
Statistical Data Pre-Processing and Time Series Incorporation for High-Efficacy Calibration of Low-Cost NO2 Sensor Using Machine Learning
PublikacjaAir pollution stands as a significant modern-day challenge impacting life quality, the environment, and the economy. It comprises various pollutants like gases, particulate matter, biological molecules, and more, stemming from sources such as vehicle emissions, industrial operations, agriculture, and natural events. Nitrogen dioxide (NO2), among these harmful gases, is notably prevalent in densely populated urban regions. Given...
-
Optimization-Based Robustness Enhancement of Compact Microwave Component Designs with Response Feature Regression Surrogates
PublikacjaThe ability to evaluate the effects of fabrication tolerances and other types of uncertainties is a critical part of microwave design process. Improving the immunity of the device to parameter deviations is equally important, especially when the performance specifications are stringent and can barely be met even assuming a perfect manufacturing process. In the case of modern miniaturized microwave components of complex topologies,...
-
Machine-Learning-Powered EM-Based Framework for Efficient and Reliable Design of Low Scattering Metasurfaces
PublikacjaPopularity of metasurfaces has been continuously growing due to their attractive properties including the ability to effectively manipulate electromagnetic (EM) waves. Metasurfaces comprise optimized geometries of unit cells arranged as a periodic lattice to obtain a desired EM response. One of their emerging application areas is the stealth technology, in particular, realization of radar cross section (RCS) reduction. Despite...
-
Patch size setup and performance/cost trade-offs in multi-objective EM-driven antenna optimization using sequential domain patching
PublikacjaPurpose This paper aims to assess control parameter setup and its effect on computational cost and performance of deterministic procedures for multi-objective design optimization of expensive simulation models of antenna structures. Design/methodology/approach A deterministic algorithm for cost-efficient multi-objective optimization of antenna structures has been assessed. The algorithm constructs a patch connecting extreme Pareto-optimal...
-
High-Efficacy Global Optimization of Antenna Structures by Means of Simplex-Based Predictors
PublikacjaDesign of modern antenna systems has become highly dependent on computational tools, especially full-wave electromagnetic (EM) simulation models. EM analysis is capable of yielding accurate representation of antenna characteristics at the expense of considerable evaluation time. Consequently, execution of simulation-driven design procedures (optimization, statistical analysis, multi-criterial design) is severely hindered by the...
-
Design of High-Performance Scattering Metasurfaces through Optimization-Based Explicit RCS Reduction
PublikacjaThe recent advances in the development of coding metasurfaces created new opportunities in realization of radar cross section (RCS) reduction. Metasurfaces, composed of optimized geometries of meta-atoms arranged as periodic lattices, are devised to obtain desired electromagnetic (EM) scattering characteristics. Despite potential benefits, their rigorous design methodologies are still lacking, especially in the context of controlling...