Wyniki wyszukiwania dla: THIN CVD DIAMOND FILMS
-
Structural evaluation of percolating, self-healing polyurethane–polycaprolactone blends doped with metallic, ferromagnetic, and modified graphene fillers
PublikacjaComposites with differently shaped micro- and nanofillers show various, unique thermal, and physicochemical properties when mixed with carefully chosen polymer matrix. Selected composition holds strategic value in achieving desired properties that is biodegradability, thermoelectric conductivity, and shape memory for organic coating. The main aim of this work is to briefly examine structural changes after reaching percolation...
-
Structural evaluation of percolating, self-healing polyurethane–polycaprolactone blends doped with metallic, ferromagnetic, and modified graphene fillers
PublikacjaComposites with differently shaped micro- and nanofillers show various, unique thermal, and physicochemical properties when mixed with carefully chosen polymer matrix. Selected composition holds strategic value in achieving desired properties that is biodegradability, thermoelectric conductivity, and shape memory for organic coating. The main aim of this work is to briefly examine structural changes after reaching percolation threshold...
-
Time-frequency analysis in optical coherence tomography for technical objects examination
PublikacjaOptical coherence tomography (OCT) is one of the most advanced optical measurement techniques for complex structure visualization. The advantages of OCT have been used for surface and subsurface defect detection in composite materials, polymers, ceramics, non-metallic protective coatings, and many more. Our research activity has been focused on timefrequency spectroscopic analysis in OCT. It is based on time resolved spectral analysis...
-
Numerical model for thin liquid film with evaporation and condensation on solid surfaces in systems with conjugated heat transfer
PublikacjaCondensation and evaporation processes from wetted surfaces are of utmost importance in many technological or industrial applications. In many devices such as home-appliances and air conditioning systems just to name a few, condensation and evaporation processes greatly impact their performance and energy efficiency; The physics of these processes is quite complex, involving conjugate heat transfer among solid–liquid film-gaseous...
-
The Effect of Laser Re-Solidification on Microstructure and Photo-Electrochemical Properties of Fe-Decorated TiO2 Nanotubes
PublikacjaFossil fuels became increasingly unpleasant energy source due to their negative impact on the environment; thus, attractiveness of renewable, and especially solar energy, is growing worldwide. Among others, the research is focused on smart combination of simple compounds towards formation of the photoactive materials. Following that, our work concerns the optimized manipulation of laser light coupled with the iron sputtering to...
-
Nonconventional 1,8-Diazafluoren-9-One Aggregates for Green Light Enhancement in Hybrid Biocompatible Media
PublikacjaOrganic aggregates currently play a prominent role, mainly for their unique optoelectronic properties in the aggregated state. Such properties can be related to the aggregates’ structure and the molecular packing mode. In the literature, we have well-established models of H and J aggregates defined based on the molecular exciton model. However, unconventional aggregates, the most unrecognized forms, have been generating interest...
-
Thermally tuneable optical and electrochemical properties of Au-Cu nanomosaic formed over the host titanium dimples
PublikacjaAu-Cu nanostructures offer unique optical and catalytic properties unlike the monometallic ones resulting from the specific interaction. Among others, they have the ability to exhibit surface plasmon resonance, electrochemical activity towards the oxygen and hydrogen evolution reaction (OER, HER) as well as improved photoresponse in relation to monometalic but those properties depend highly on the substrate where bimetallic structures...
-
Density functional theory-based simulations of sum frequency generation spectra involving methyl stretching vibrations: effect of the molecular model on the deduced molecular orientation and comparison with an analytical approach
PublikacjaThe knowledge of the first hyperpolarizability tensor elements of molecular groups is crucial for a quantitative interpretation of the sum frequency generation (SFG) activity of thin organic films at interfaces. Here, the SFG response of the terminal methyl group of a dodecanethiol (DDT) monolayer has been interpreted on the basis of calculations performed at the density functional theory (DFT) level of approximation. In particular,...
-
Smart Materials in Architecture: Useful Tools with Practical Applications or Fascinating Inventions for Experimental Design?
PublikacjaFor at least several decades smart or so-called intelligent materials, being the result of great advancements in material engineering, appear in architecture in different applications. Most of them are called "smart" because of their inherent properties: a real-time response to environmental stimuli. There are also those considered to be "smart" due to smart design: their original structure or the composition of their materials...