Filtry
wszystkich: 11
Wyniki wyszukiwania dla: ANISOTROPIC ELASTICITY
-
Strongly anisotropic surface elasticity and antiplane surface waves
PublikacjaWithin the new model of surface elasticity, the propagation of anti-plane surface waves is discussed. For the proposed model, the surface strain energy depends on surface stretching and on changing of curvature along a preferred direction. From the continuum mechanics point of view, the model describes finite deformations of an elastic solid with an elastic membrane attached on its boundary reinforced by a family of aligned elastic...
-
On Anti-Plane Surface Waves Considering Highly Anisotropic Surface Elasticity Constitutive Relations
PublikacjaWithin the framework of highly anisotropic surface elasticity model we discuss the propagation of new type of surface waves that are anti-plane surface waves. By the highly anisotropic surface elasticity model we mean the model with a surface strain energy density which depends on incomplete set of second derivatives of displacements. From the physical point of view this model corresponds to a coating made of a family of parallel...
-
On effective surface elastic moduli for microstructured strongly anisotropic coatings
PublikacjaThe determination of surface elastic moduli is discussed in the context of a recently proposed strongly anisotropic surface elasticity model. The aim of the model was to describe deformations of solids with thin elastic coatings associated with so-called hyperbolic metasurfaces. These metasurfaces can exhibit a quite unusual behaviour and concurrently a very promising wave propagation behaviour. In the model of strongly anisotropic...
-
On the Equations of the Surface Elasticity Model Based on the Theory of Polymeric Brushes
PublikacjaMotivating by theory of polymers, in particular, by the models of polymeric brushes we present here the homogenized (continual) two-dimensional (2D) model of surface elasticity. A polymeric brush consists of an system of almost aligned rigid polymeric chains. The interaction between chain links are described through Stockmayer potential, which take into account also dipole-dipole interactions. The presented 2D model can be treated...
-
Weak Solutions within the Gradient-Incomplete Strain-Gradient Elasticity
PublikacjaIn this paper we consider existence and uniqueness of the three-dimensional static boundary-value problems in the framework of so-called gradient-incomplete strain-gradient elasticity. We call the strain-gradient elasticity model gradient-incomplete such model where the considered strain energy density depends on displacements and only on some specific partial derivatives of displacements of first- and second-order. Such models...
-
On existence and uniqueness of weak solutions for linear pantographic beam lattices models
PublikacjaIn this paper, we discuss well-posedness of the boundary-value problems arising in some “gradientincomplete” strain-gradient elasticity models, which appear in the study of homogenized models for a large class ofmetamaterials whosemicrostructures can be regarded as beam lattices constrained with internal pivots. We use the attribute “gradient-incomplete” strain-gradient elasticity for a model in which the considered strain energy...
-
On the peculiarities of anti-plane surface waves propagation for media with microstructured coating
PublikacjaWe discuss new type of surface waves which exist in elastic media with surface energy. Here we present the model of a coating made of polymeric brush. From the physical point of view the considered model of surface elasticity describes a highly anisotropic surface coating. Here the surface energy model could be treated as 2D reduced strain gradient continuum as surface strain energy depends on few second spatial derivatives of...
-
On the well posedness of static boundary value problem within the linear dilatational strain gradient elasticity
PublikacjaIn this paper, it is proven an existence and uniqueness theorem for weak solutions of the equilibrium problem for linear isotropic dilatational strain gradient elasticity. Considered elastic bodies have as deformation energy the classical one due to Lamé but augmented with an additive term that depends on the norm of the gradient of dilatation: only one extra second gradient elastic coefficient is introduced. The studied class...
-
Linear viscoelastic transversely isotropic model based on the spectral decomposition of elasticity tensors
PublikacjaThe linear viscoelasticity is still a useful model in the engineering for studying the behavior of materials loaded with different loading rates (frequencies). Certain types of materials reveal also an anisotropic behavior: fiber reinforced composites, asphalt concrete mixtures, or wood, to name a few. In general, researchers try to identify experimentally the dependence of engineering constants like: directional Young’s moduli...
-
Linear Pantographic Sheets: Existence and Uniqueness of Weak Solutions
Publikacjawe address the well-posedness of the planar linearized equilibrium problem for homogenized pantographic lattices. To do so: (i) we introduce a class of subsets of anisotropic Sobolev’s space as the most suitable energy space E relative to assigned boundary conditions; (ii) we prove that the considered strain energy density is coercive and positive definite in E ; (iii) we prove that the set of placements for which the strain...
-
Laplace domain BEM for anisotropic transient elastodynamics
PublikacjaIn this paper, we describe Laplace domain boundary element method (BEM) for transient dynamic problems of three-dimensional finite homogeneous anisotropic linearly elastic solids. The employed boundary integral equations for displacements are regularized using the static traction fundamental solution. Modified integral expressions for the dynamic parts of anisotropic fundamental solutions and their first derivatives are obtained....