Filtry
wszystkich: 4
Wyniki wyszukiwania dla: GWRM
-
Thermal buckling of functionally graded piezomagnetic micro- and nanobeams presenting the flexomagnetic effect
PublikacjaGalerkin weighted residual method (GWRM) is applied and implemented to address the axial stability and bifurcation point of a functionally graded piezomagnetic structure containing flexomagneticity in a thermal environment. The continuum specimen involves an exponential mass distributed in a heterogeneous media with a constant square cross section. The physical neutral plane is investigated to postulate functionally graded material...
-
Flexomagneticity in buckled shear deformable hard-magnetic soft structures
PublikacjaThis research work performs the first time exploring and addressing the flexomagnetic property in a shear deformable piezomagnetic structure. The strain gradient reveals flexomagneticity in a magnetization phenomenon of structures regardless of their atomic lattice is symmetrical or asymmetrical. It is assumed that a synchronous converse magnetization couples both piezomagnetic and flexomagnetic features into the material structure....
-
Implementation of Non-Probabilistic Methods for Stability Analysis of Nonlocal Beam with Structural Uncertainties
PublikacjaIn this study, a non-probabilistic approach based Navier’s Method (NM) and Galerkin Weighted Residual Method (GWRM) in term of double parametric form has been proposed to investigate the buckling behavior of Euler-Bernoulli nonlocal beam under the framework of the Eringen's nonlocal elasticity theory, considering the structural parameters as imprecise or uncertain. The uncertainties in Young’s modulus and diameter of the beam are...
-
On Nonlinear Bending Study of a Piezo-Flexomagnetic Nanobeam Based on an Analytical-Numerical Solution
PublikacjaAmong various magneto-elastic phenomena, flexomagnetic (FM) coupling can be defined as a dependence between strain gradient and magnetic polarization and, contrariwise, elastic strain and magnetic field gradient. This feature is a higher-order one than piezomagnetic, which is the magnetic response to strain. At the nanoscale, where large strain gradients are expected, the FM effect is significant and could be even dominant. In...