Wyniki wyszukiwania dla: MICROFLUIDIC, FREQUENCY-RECONFIGURABLE, SELF-QUADRUPLEXING ANTENNA, SUBSTRATE-INTEGRATED WAVEGUIDE
-
Microfluidically Frequency-Reconfigurable Compact Self-Quadruplexing Tunable Antenna with High Isolation Based on Substrate Integrated Waveguide
PublikacjaThis communication presents a novel concept of microfluidically frequency-reconfigurable self-quadruplexing tunable antenna for quad-band applications. At the initial design stage, a substrate-integrated square cavity is divided into four unequal quarter-mode cavity resonators by inserting an X-shaped slot on the top surface of the cavity. Applying four 50-ohm microstrip feed-lines to these four quarter-mode cavity resonators enables...
-
Microfluidically Frequency-Reconfigurable Self-Quadruplexing Antenna Based on Substrate Integrated Square-Cavity
PublikacjaIn this article, a novel concept of self-quadruplexing tunable antenna (SQTA) enabled by microfluidic channels is investigated. The operating channels are either filled with air or dielectric liquids to enable frequency tunability. The proposed SQTA is implemented on the substrate-integrated square-cavity (SISC). A swastika-shaped slot is milled on the top-surface of the SISC to create four quarter-mode resonators. The resonators...
-
Ultra-Compact Self-Quadruplexing Microfluidically Frequency Reconfigurable Slot Antenna Using Half-Mode SIW
PublikacjaIn this brief, the design of an ultra-compact self-quadruplexing frequency reconfigurable antenna (SQFRA) utilizing a half-mode substrate-integrated waveguide (HMSIW) and microfluidic channels is discussed. Four HMSIW cavities fed by four microstrip lines and slots are used to construct a highly compact antenna. The microstrip feedings to the HMSIW cavities are applied in such a way that the proposed antenna exhibits self-quadruplexing...
-
Substrate Integrated Waveguide-Based Frequency-Tunable Self-Octaplexing Antenna
PublikacjaThis communication presents the first-ever substrate integrated waveguide (SIW)-based frequency-tunable self-octaplexing antenna (SOA) for wireless communication. The structure is arranged by implementing eight distinct patches with planar 50-ohm feedlines at the top of the SIW cavity, which realize eight distinct resonant frequencies. Independent tuning of each resonant frequency is achieved by incorporating appropriately allocated...
-
Highly-Miniaturized Self-Quadruplexing Antenna Based on Substrate-Integrated Rectangular Cavity
PublikacjaThis paper introduces a novel self-quadruplexing antenna (SQA) architecture using a substrate-integrated rectangular cavity (SIRC) for compact size, wide-frequency re-designability, and high isolation responses. The proposed SQA is developed by engraving two U-shaped slots (USSs) on the top conductor of the SIRC. The USSs are excited by employing four microstrip feedlines to achieve self-quadruplexing antenna characteristics. The...
-
Substrate Integrated Waveguide-Based Ultra-Compact Self-Heptaplexing Antenna for IoT Connectivity
PublikacjaThis paper introduces an innovative design of a substrate-integrated waveguide (SIW)-based self-heptaplexing antenna (SHA). The proposed structure is implemented using a combination of circular and rectangular HM-SIW cavities. Furthermore, the antenna contains seven individual patches on top of the SIW cavity to operate at seven distinct frequencies. The microstrip feeding technique has been used to activate seven distinct ports....
-
Shielded HMSIW-based frequency-tunable self-quadruplexing antenna using different solid/liquid dielectrics
PublikacjaThis article proposes a frequency-tunable self-quadruplexing antenna based on a shielded half-mode substrate integrated waveguide (S-HMSIW). In order to reduce the size of the HMSIW cavity resonator and to obtain quad-band characteristics, a modied E-shaped slot is engraved on the top of the metal. The experimental validation is carried out after analyzing the data using a circuit model. Flexibility of each resonant frequency is...
-
Frequency-Reconfigurable Hybrid SIW-Based Self-Diplexing Antenna Using Solid and Liquid Dielectric Loading
PublikacjaThis paper presents a novel frequencyreconfigurable self-diplexing antenna (SDA) utilizing a hybrid substrate-integrated waveguide (SIW). The antenna comprises a radiating slot, a feeding network, and a hybrid SIW cavity featuring half-mode circular and half-mode rectangular SIW structures. The unique feature of this antenna lies in its fine-tuning capability of each resonant frequency by inserting or injecting solid and liquid...
-
A Substrate Integrated Waveguide (SIW) Bandpass Filter in A Box Configuration With Frequency-Dependent Coupling
PublikacjaThis letter presents the design of a microwave bandpass filter with frequency-dependent coupling implemented in substrate integrated waveguide (SIW) technology. The proposed filter implements a four-pole generalized Chebyshev filtering function with two transmission zeros. Resonators are arranged in an extended box configuration with dispersive coupling on a main signal path, which produces an extra zero in comparison to classical...
-
A Compact Self-Hexaplexing Antenna Implemented on Substrate-Integrated Rectangular Cavity for Hexa-Band Applications
PublikacjaThis brief introduces a novel architecture of a compact self-hexaplexing antenna (SHA) implemented on a substrate-integrated rectangular cavity (SIRC) for hexa-band applications. The proposed SHA is configured by using an SIRC resonator, two Pi-shaped slots (PSSs), and six 50Ω microstrip feedlines. The PSSs are connected back-to-back and loaded on top of the SIRC resonator to produce six patch radiators (PRs). The PRs are excited...
-
A Trisection Filter Design With Negative Slope of Frequency-Dependent Crosscoupling Implemented in Substrate Integrated Waveguide (SIW)
PublikacjaThis letter reports on a novel realization of a microwave bandpass filter in a triplet configuration with a frequency-dependent crosscoupling implemented in substrate integrated waveguide (SIW). The design involves implementing dispersive coupling with a negative slope, a feature that allows the capabilities of the classic triplet topology to be extended. In this particular case, the implementation of two transmission zeros on...
-
Miniaturized bandpass substrate integrated waveguide filter with frequency-dependent coupling realized using asymmetric GCPW discontinuity
PublikacjaAn asymmetric GCPW discontinuity is proposed to provide frequency-dependent coupling in microwave bandpass filters. Wider and narrow sections introduce, respectively, the capacitive and inductive component to the equivalent circuit representing coupling. By selecting the dimensions of the discontinuity and width of the inductive window in substrate integrated waveguide, an additional transmission zero can be introduced at prescribed...
-
Compact Substrate-Integrated Hexagonal Cavity-Backed Self-Hexaplexing Antenna for Sub-6 GHz Applications
PublikacjaA self-multiplexing SIW antenna based on hexagonal SIW cavity is proposed. The self-hexaplexing antenna consists of different sizes of resonating elements, which provide the hexaband operations. The antenna resonates at 5 GHz, 5.17 GHz, 5.32 GHz, 5.53 GHz, 5.62 GHz, and 5.72 GHz by employing different slot lengths between the resonating elements. The proposed antenna provides the individual tunable characteristics of the operating...
-
Highly-Miniaturized Microfluidically-Based Frequency Reconfigurable Antenna Diplexer Employing Half-Mode SIRW
PublikacjaThis article introduces a super-miniaturized frequency reconfigurable antenna diplexer based on microfluidic techniques. The proposed structure is developed using a half-mode substrate-integrated rectangular waveguide (HMSIRW). The antenna architecture consists of two HMSIRW cavities loaded with L-shaped slots, which are excited by two microstrip feedlines to realize two distinct radiating frequency bands. The footprint of the...
-
Microfluidic SIW-Based Tunable Self-Diplexing Antenna for Sub-6 GHz Band Applications
PublikacjaThis work introduces a novel frequency tunable self-diplexing antenna (SDA) design based on substrate integrated waveguide (SIW) technology. A modified A-shaped slot is employed on the cavity’s top plane, which is excited by two independent 50 Ω microstrip feed lines to operate at each resonant frequency. The frequency flexibility of the proposed antenna allows for fine-tuning at each resonance frequency. The frequency flexibility...
-
Ultra-Miniaturized HMSIW Cavity-Backed Reconfigurable Antenna Diplexer Employing Dielectric Fluids with Wide Frequency Tuning Range
PublikacjaThis communication presents an ultra-miniaturized two-way frequency tunable antenna diplexer based on cavity-backed slots and dielectric fluids. The proposed antenna utilizes two half-mode substrate-integrated rectangular cavities loaded with slots and fluidic pockets. The conventional size reduction is achieved by employing half-mode cavities, whereas ultra-miniaturization is obtained by applying the slots, which provides additional...
-
Highly Miniaturized Self-Diplexed U-Shaped Slot Antenna Based on Shielded QMSIW
PublikacjaThis article presents an efficient yet simple design approach to highly miniaturized cavity-backed self-diplexing antenna (SDA) with high-isolation. The structure employs a shielded quarter-mode substrate integrated waveguide (QMSIW). Two U-shaped slots are engraved on the top conducting plane, which realize two frequency bands and significant size reduction. The slots are excited by two independent 50Ω orthogonal feed-lines to...
-
Shielded HMSIW-Based Self-Triplexing Antenna With High Isolation for WiFi/WLAN/ISM Band
PublikacjaThis article presents a novel design of a miniaturized self-triplexing antenna (STA) based on the shielded half-mode substrate integrated waveguide (S-HMSIW) for WiFi/WLAN/ISM-band applications. The S-HMSIW is constructed by assembling one row of vias and an open slot at the open-ended side of the conventional HMSIW. This configuration increases the quality factor and minimizes unwanted radiation loss, which allows for achieving...
-
Substrate-integrated waveguide (SIW) filter design using space mapping
PublikacjaIn this paper, we present a fast technique for an automated design of microwave filters in substrate integrated wave (SIW) technology. The proposed methodology combines the space mapping technique with a cost function defined using the location of complex zeros and poles of filter’s transfer and reflection function and uses a rectangular waveguide as a surrogate model. The effectiveness of the proposed technique is presented with...
-
Design of Microwave Lossy Filter Based on Substrate Integrated Waveguide (SIW)
PublikacjaIn this letter, we propose a lossy three-pole Chebyshev filter centered at 5.15 GHz, based on the substrate integrated waveguide (SIW) with scattering characteristics shifted down by 5.68 dB. The filter is composed of three directly coupled SIW cavities with three lossy couplings between nonadjacent resonators. These additional couplings are realized using mixed coupled slot and microstrip lines connected with metal electrode leadless...
-
Miniature reconfigurable antenna
PublikacjaThis work concerns the design of a miniature, low-profile reconfigurable antenna based on Huygens metamaterial sources for frequency f0 = 2.45 GHz. Two planar Huygens sources were designed consisting of near-field resonators. Sources are excited from a specially designed reconfigurable control system. Thanks to the two PIN diodes, the system can realize two cardioid radiation characteristics with...
-
A Comprehensive Survey on Antennas On-Chip Based on Metamaterial, Metasurface, and Substrate Integrated Waveguide Principles for Millimeter-Waves and Terahertz Integrated Circuits and Systems
PublikacjaAntennas on-chip are a particular type of radiating elements valued for their small footprint. They are most commonly integrated in circuit boards to electromagnetically interface free space, which is necessary for wireless communications. Antennas on-chip radiate and receive electromagnetic (EM) energy as any conventional antennas, but what distinguishes them is their miniaturized size. This means they can be integrated inside...
-
A Self-Equalized Waveguide Filter With Frequency-Dependent (Resonant) Couplings
PublikacjaThis letter presents a design of a fifth-order linear phase filter with frequency-dependent couplings. The filter is composed of a triplet that is directly coupled to two resonators at the input and output. To provide group delay flattening a cross-coupling in the trisection has a strongly dispersive character with a negative slope parameter. To achieve this, an E-plane stub with a septum was used. To further improve the filter...
-
Coplanar Waveguide-Fed Broadband Microwave Devices with (or without) a Thin Dielectric Substrate for Use in Flexible Electronic Systems
PublikacjaTwo examples of microwave devices, fed by a coplanar waveguide and realized on a thin substrate (or without such a substrate), are employed to investigate the influence of devices’ curvatures and the proximity of different materials on their parameters. To perform the tests, a broadband antenna and a low-pass filter are chosen. A feeding coplanar waveguide is realized on a dielectric material brick attached to an SMA connector...
-
Highly-Miniaturized Dual-Mode Bandpass Filter Based on Quarter-Mode Substrate Integrated Waveguide with Wide Stopband
PublikacjaThis paper presents a novel design of a highly-miniaturized dual-mode bandpass filter (BPF) employing a quarter-mode substrate integrated waveguide (QMSIW). The QMSIW resonator is based on a square cavity with metallic vias along two sides, and open-ended edges at the remaining sides that contain orthogonal feed lines. An open slot is introduced along the two sides of the square cavity with metallic vias to form a magnetic wall....
-
Coplanar Waveguide Fed Ultra-Wideband Antenna Over the Planar and Cylindrical Surfaces
PublikacjaThe investigation of coplanar waveguide fed ultra-wideband antenna and the influence of the proximity of different materials on the reflection coefficients and radiation character-istics is presented. The antenna is composed of two circular coplanar strips which enclose slot aperture of similar shape and is designed on a thin and flexible substrate. From the modeling and experimental tests the antenna shows good performance in...
-
Design of compact self-quintuplexing antenna with high-isolation for penta-band applications
PublikacjaThis article presents a novel compact self-quintuplexing antenna architecture based on a substrate-integrated rectangular cavity (SIRC) for pentaband applications. The proposed self-quintuplexing antenna is constructed by employing an SIRC, one Pi-shaped slot (PSS), one T-shaped slot (TSS), and five 50Ω microstrip feedlines. The PSS and TSS are engraved on the top of the SIRC to create five radiating patches, which are excited...
-
Ultra-Compact SIRC-Based Self-Triplexing Antenna with High Isolation
PublikacjaAn ultra-compact self-triplexing antenna realized on a substrate-integrated rectangular cavity (SIRC) is discussed in this study. The proposed structure employs two L-shaped slots and an in-verted U-shaped slot to radiate at three independent operating frequency bands. Three 50-ohm microstrip feed lines are used to excite the radiation in these slots. The operating frequency is individually tuned using the slot size. The slot placement...
-
Design of Substrate Integrated Waveguide Filters Using Implicit Space Mapping Technique
Publikacja -
Shape Memory Alloy-Based Fluidically Reconfigurable Metasurfaced Beam Steering Antenna
PublikacjaA low-cost actuator-based fluidically programmable metasurface (FPMS) antenna is proposed to solve the slow tuning speed problem of the manually fluidic based reconfigurable antennas. The FPMS-based antenna is probe-fed and comprises a 4 × 4 square ring metasurface as a superstrate. Moreover, two shape memory alloy (SMA)-based electrically-controlled actuators are employed in the design for controlling the position of the 3D-printed...
-
D-Band High Gain Planer Slot Array Antenna using Gap Waveguide Technology
PublikacjaA D-band high gain slot array antenna with corporate-fed distribution network based on gap waveguide structures is proposed at 140GHz. To overcome the fabrication challenges at such high frequency, the gap waveguide technology is deployed in which good electrical contact between different parts of the waveguide structure is not required. The proposed sub-array has four radiating slots that are excited by a groove gap cavity and...
-
An Automated Design of Substrate Integrated Waveguide Filters Based on Implicit Space Mapping Optimization
Publikacja -
A gap waveguide-based mechanically reconfigurable phase shifter for high-power Ku-band applications
PublikacjaThis paper presents a novel design of a low-loss, reconfgurable broadband phase shifter based on groove gap waveguide (GGW) technology. The proposed phase shifter consists of a folded GGW and three bends with a few pins forming the GGW and one bend attached to a movable plate. This movable plate allows for adjustments to the folded waveguide length, consequently altering the phase of electromagnetic waves. The advantage of GGW...
-
Miniaturized Inline Bandpass Filters Based on Triple-Mode Integrated Coaxial-Waveguide Resonators
PublikacjaThis work presents a design technique to implement miniaturized cross-coupled bandpass filters in inline physical configurations based on triple-mode resonators. Triple-mode resonances are obtained by using integrated coaxial-waveguide cavity resonators. They consist of two coaxial conducting posts placed in the sidewalls of a rectangular waveguide cavity. In the proposed triplet, a transmission zero (TZ) can be positioned at any...
-
DoA Estimation Using Reconfigurable Antennas in Millimiter-Wave Frequency 5G Systems
PublikacjaTo achieve low latency and high throughputs, future 5G systems will have to utilize complex antenna systems able to provide beamforming and direction-of-arrival (DoA) estimation capabilities. Most of the concepts available in the literature rely on analog or digital beamforming, which is well developed and can be used both at a base station and in a user terminal. However, in applications, in which...
-
Integrated controller for ultra high frequency technique laboratory
PublikacjaDepartment of Microwave and Antenna Engineering decided to modernize the laboratory of Ultra High Frequency Techniques. The main change was to replace measurement of the field distribution inside rectangular waveguides by analysing the fields around striplines. This involved the need to overcome several technical and conceptual problems. Precise positioning of the probe and reading the field distribution near the stripline is important...
-
Design of a Coplanar Waveguide-Fed Wideband Compact-Size Circularly Polarized Antenna and polarization-sense alteration
PublikacjaThis paper presents the design and validation of a geometrically simple circularly polarized(CP) structure featuring flat gain in the sub-6 GHz 5th generation spectrum. The proposed structure is based on coplanar-waveguide-fed, modified wide slot etched in the ground plane. For generating CP waves, the coplanar ground planes are designed with slight asymmetry in both the horizontal and vertical directions. Furthermore, the ground...
-
Filtering EBG Structures Implemented in Coplanar Waveguide Feedline of Planar Slot Antenna
PublikacjaA novel compact dual-band slot antenna fed by a coplanar waveguide (CPW) incorporating electromagnetic band gap (EBG) structures has been proposed. At first, a classic wideband slot antenna fed by a CPW, dedicated to work in 2 ÷ 18 GHz band, has been designed. Subsequently, by adding simple EBG filtering structures into a CPW feedline, a dual-band performance ranging from 2.5 to 5.3 GHz and from 13.5 to 16.3 GHz, with the voltage...
-
Millimeter Wave Wideband and Low-Loss Compact Power Divider Based on Gap Waveguide: For Use in Wideband Antenna Array System
PublikacjaThis paper presents a wideband and low-loss design of a compact power divider based on gap waveguide technology. The proposed power divider consists of two adjacent E-plane groove gap waveguide and a small ridge section to couple and equally divide the EM energy from the input E-plane groove gap waveguide to the two output ones in-phase. The simulation results show that the proposed waveguide power divider has about 40% impedance...
-
Bandwidth-Controllable Third-Order Band Pass Filter Using Substrate Integrated Full- and Semi-Circular Cavities
PublikacjaThe article presents a novel circular substrate integrated waveguide (SIW) bandpass filter (BPF) with controllable bandwidth. The proposed BPF is configured using two microstrip feedlines, semi- circular SIW cavities, capacitive slots, and inductive vias. The circular cavity is bisected into two halves, with the two copies thereof being cascaded. Two bisected and cascaded structures obtained this way are subsequently connected...
-
High frequency oscillations in human memory and cognition: a neurophysiological substrate of engrams?
PublikacjaDespite advances in understanding the cellular and molecular processes underlying memory and cognition, and recent successful modulation of cognitive performance in brain disorders, the neurophysiological mechanisms remain underexplored. High frequency oscillations beyond the classic electroencephalogram spectrum have emerged as a potential neural correlate of fundamental cognitive processes. High frequency oscillations are detected...
-
Wideband High-Gain Low-Profile Series-Fed Antenna Integrated with Optimized Metamaterials for 5G millimeter Wave Applications
PublikacjaThis paper presents a series-fed four-dipole antenna with a broad bandwidth, high gain, and compact size for 5G millimeter wave (mm-wave) applications. The single dipole antenna provides a maximum gain of 6.2 dBi within its operational bandwidth, which ranges from 25.2 to 32.8 GHz. The proposed approach to enhance both gain and bandwidth involves a series-fed antenna design. It comprises four dipoles with varying lengths, and a...
-
Frequency-Based Regularization for Improved Reliability Optimization of Antenna Structures
PublikacjaThe paper proposes a modified formulation of antenna parameter tuning problem. The main ingredient of the presented approach is a frequency-based regularization. It allows for smoothening the functional landscape of the assumed cost function, defined to encode the prescribed design specifications. The regularization is implemented as a special penalty term complementing the primary objective and enforcing the alignment of the antenna...
-
Ultra-Wideband Vivaldi Antenna with an Integrated Noise-Rejecting Parasitic Notch Filter for Online Partial Discharge Detection
PublikacjaPower transformers and gas-insulated switchgear (GIS) play crucial roles in electrical power grids. However, they may suffer from degradation of insulation material due to wear and tear, leading to their imminent failure. Partial discharges (PDs) are an initial sign of insulation materials degradation which emit signals spanning various physical domains, including electromagnetic. PDs are temporally narrow, high-frequency, stochastic...
-
Fast Simulation-Driven Design of a Planar UWB Dipole Antenna with an Integrated Balun
PublikacjaThe paper presents a design of an ultra-wideband (UWB) antenna with an integrated balun. A fully planar balun interfacing the microstrip input of the structure to the coplanar stripline (CPS) input of the dipole antenna is introduced. The electromagnetic (EM) model of the structure includes the dipole, the balun, and the microstrip input to account for interactions over the UWB band. The EM model is adjusted for low reflection...
-
Highly-Compact Dual-Band Bandpass Waveguide Filter Based on Cross-Shaped Frequency-Dependent Coupling
PublikacjaThis work reports the design of an original class of highly-compact dual-band bandpass filter based on dual-mode waveguide resonators inter-coupled through a novel type of frequency-dependent coupling (FDC). The devised FDC consists of a cross-shaped metallic structure placed in the broad wall of a rectangular waveguide. This FDC produces two additional poles and three extra transmission zeros (TZs). Specifically, each pole is...
-
Design of a Planar UWB Dipole Antenna with an Integrated Balun Using Surrogate-Based Optimization
PublikacjaA design of an ultra-wideband (UWB) antenna with an integrated balun is presented. A fully planar balun configuration interfacing the microstrip input of the structure to the coplanar stripline (CPS) input of the dipole antenna is introduced. The electromagnetic (EM) model of the structure of interest includes the dipole, the balun, and the microstrip input to account for coupling and radiation effects over the UWB band. The EM...
-
Compact Quasi-Elliptic-Type Inline Waveguide Bandpass Filters With Nonlinear Frequency-Variant Couplings
PublikacjaThis work presents the design techniques to synthesize a class of compact inline quasi-elliptic-type waveguide cavity bandpass filters based on novel nonlinear frequency-variant couplings (NFVCs). These highly dispersive frequency-variant couplings (FVCs) are realized by means of a pair of partial-height posts that are placed at the junctions between every two cavity resonators. Each NFVC produces a transmission pole in between...
-
Inline Waveguide Filter With Compact Frequency-Dependent Coupling Producing Two Additional Poles and Three Transmission Zeros
PublikacjaThis work reports a compact frequency-dependent coupling (FDC) structure introduced in a rectangular waveguide, which allows to generate two additional in-band transmission poles and three transmission zeros (TZs). This serves to increase the order/selectivity of the waveguide bandpass filter in a compact inline topology, thus without the need for any additional space/volume or cross coupling. The proposed FDC consists of a partial-height...
-
Resonator-Loaded Waveguide Notch Filters with Broad Tuning Range and Additive-Manufacturing-Based Operating Frequency Adjustment Procedure
PublikacjaThis article presents a new class of ring-resonator-loaded waveguide notch filters with a broad tuning range, low cost, and improved performance. The proposed approach employs a comple-mentary asymmetric split ring resonator coupled to a microstrip transmission line and excited in a rectangular waveguide. An equivalent circuit model is proposed to explain the working principle of the proposed notch filter. The adjustment of the...