Filtry
wszystkich: 3006
wyświetlamy 1000 najlepszych wyników Pomoc
Wyniki wyszukiwania dla: THERMAL FRICTION CONTACT
-
The influence of contact geometry on friction and wear characteristics
Publikacja -
Contact with coupled adhesion and friction: Computational framework, applications, and new insights
PublikacjaContact involving soft materials often combines dry adhesion, sliding friction, and large deformations. At the local level, these three aspects are rarely captured simultaneously, but included in the theoretical models by Mergel et al., (2019). We here develop a corresponding finite element framework that captures 3D finite-strain contact of two deformable bodies. This framework is suitable to investigate sliding friction even...
-
A chemo-mechano-thermodynamical contact theory for adhesion, friction, and (de)bonding reactions
PublikacjaThis work presents a self-contained continuum formulation for coupled chemical, mechanical, and thermal contact interactions. The formulation is very general and, hence, admits arbitrary geometry, deformation, and material behavior. All model equations are derived rigorously from the balance laws of mass, momentum, energy, and entropy in the framework of irreversible thermodynamics, thus exposing all the coupling present in the...
-
Continuum contact model for friction between graphene sheets that accounts for surface anisotropy and curvature
PublikacjaUnderstanding the interaction mechanics between graphene layers and co-axial carbon nanotubes (CNTs) is essential for modeling graphene and CNT-based nanoelectromechanical systems. This work proposes a new continuum contact model to study interlayer interactions between curved graphene sheets. The continuum model is calibrated and validated using molecular dynamics (MD) simulations. These are carried out employing the reactive...
-
Thermal boundary conditions to simulate friction layers and coatings at sliding contacts
PublikacjaA brief review of the thermal boundary conditions specified at sliding interfaces was performed. New thermal boundary conditions were derived aimed at solving problems of sliding with account of surface layers representing friction layers and tribological coatings. Based on the assumption of linear temperature distributions in the surface layers, the proposed conditions enable one to simplify simulations by eliminating the surface...
-
Results from tests on bolted connection components for evaluation of friction coefficient in various contact conditions
PublikacjaThe main purpose of the work was the analysis and evaluation of the self-locking quality of a bolted joint covered with Xylan 1070 coating, with comparison to the classic bolts lubricated with Molykote compound during assembly. The second part of the work was the verification of the compliance of the bolts and nuts used in the installation with the ASME B1.1 norm.
-
Perfect thermal contact of hyperbolic conduction semispaces with an interfacial heat source
PublikacjaThe problem of thermal contact between two bodies with a heat source at their interface presents great scientific and practical interest. On the time scale of a nanosecond or shorter, heat propagation should be considered in the form of thermal waves of finite speeds. This study investigated the thermal behaviour of hyperbolic conduction semispaces in perfect thermal contact subjected to the action of an interfacial heat source....
-
Porosity and shape of airborne wear microparticles generated by sliding contact between a low-metallic friction material and a cast iron
PublikacjaThe wear of brakes in transport vehicles is one of the main anthropogenic sources of airborne particulate matter in urban environments. The present study deals with the characterisation of airborne wear microparticles from a low-metallic friction material / cast iron pair used in car brakes. Particles were generated by a pin-on-disc machine in a sealed chamber at sliding velocity of 1.3 m/s and contact pressure of 1.5 MPa. They...
-
Tribological and thermal behavior with wear identification in contact interaction of the Ti6Al4V-sintered carbide with AlTiN coatings pair
Publikacja -
Pin Angle Thermal Effects on Friction Stir Welding of AA5058 Aluminum Alloy: CFD Simulation and Experimental Validation
PublikacjaThe friction stir welding (FSW) of tool pin geometry plays a critical role in the final properties of the produced joint. The tool pin geometry directly affects the generation of heat and the flow of internal materials during the FSW process. The effects of the FSW tool pin angle on heat generation and internal flow have not been quantitatively investigated in detail. In this manuscript, a validated Computational Fluid Dynamic...
-
Effect of Pin Shape on Thermal History of Aluminum-Steel Friction Stir Welded Joint: Computational Fluid Dynamic Modeling and Validation
PublikacjaThis article studied the effects of pin angle on heat generation and temperature distribution during friction stir welding (FSW) of AA1100 aluminum alloy and St-14 low carbon steel. A validated computational fluid dynamics (CFD) model was implemented to simulate the FSW process. Scanning electron microscopy (SEM) was employed in order to investigate internal materials’ flow. Simulation results revealed that the mechanical work...
-
Wear in reciprocating siding friction tests. Ball-on-flat contact. Sintered alumina ceramics (98%). No lubrication (DRY). Specim. set K05
Dane BadawczeFriction and wear tests in ball-on-flat contact. Both specimens made of sintered alumina ceramics (98%) - self-mated contact.Linear reciprocating motion.Lubrication: DRY. Sliding velocity (peak): 0.1 m/s. Load (normal force): 5N. Test rig: TPZ-1 Tribometer.Running time: progressive increments of 10, 15, 30, 60, 180 and 300s. (stored in separate folders).Specimen...
-
Wear in reciprocating siding friction tests. Ball-on-flat contact. Sintered alumina ceramics (98%). No lubrication (DRY). Specim. set K03
Dane BadawczeFriction and wear tests in ball-on-flat contact. Both specimens made of sintered alumina ceramics (98%) - self-mated contact.Linear reciprocating motion.Lubrication: DRY. Sliding velocity (peak): 0.1 m/s. Load (normal force): 5N. Test rig: TPZ-1 Tribometer.Running time: progressive increments of 10, 15, 30, 60, 180 and 300s. (stored in separate folders).Specimen...
-
Wear in reciprocating siding friction tests. Ball-on-flat contact. Sintered alumina ceramics (98%). No lubrication (DRY). Specim. set K01
Dane BadawczeFriction and wear tests in ball-on-flat contact. Both specimens made of sintered alumina ceramics (98%) - self-mated contact.Linear reciprocating motion.Lubrication: DRY. Sliding velocity (peak): 0.1 m/s. Load (normal force): 5N. Test rig: TPZ-1 Tribometer.Running time: progressive increments of 10, 15, 30, 60, 180 and 300s. (stored in separate folders).Specimen...
-
Wear in reciprocating siding friction tests. Ball-on-flat contact. Sintered alumina ceramics (98%). No lubrication (DRY). Specim. set K04
Dane BadawczeFriction and wear tests in ball-on-flat contact. Both specimens made of sintered alumina ceramics (98%) - self-mated contact.Linear reciprocating motion.Lubrication: DRY. Sliding velocity (peak): 0.1 m/s. Load (normal force): 5N. Test rig: TPZ-1 Tribometer.Running time: progressive increments of 10, 15, 30, 60, 180 and 300s. (stored in separate folders).Specimen...
-
Wear in reciprocating siding friction tests. Ball-on-flat contact. Sintered alumina ceramics (98%). Lubricant - DISTILLED WATER. Specim. set K07
Dane BadawczeFriction and wear tests in ball-on-flat contact. Both specimens made of sintered alumina ceramics (98%) - self-mated contact.Linear reciprocating motion.Lubrication: DISTILLED WATER. Sliding velocity (peak): 0.1 m/s. Load (normal force): 5N. Test rig: TPZ-1 Tribometer.Running time: progressive increments of 10, 15, 30, 60, 180 and 300s. (stored in separate...
-
Wear in reciprocating siding friction tests. Ball-on-flat contact. Sintered alumina ceramics (98%). Lubricant - DISTILLED WATER. Specim. set K02
Dane BadawczeFriction and wear tests in ball-on-flat contact. Both specimens made of sintered alumina ceramics (98%) - self-mated contact.Linear reciprocating motion.Lubrication: DISTILLED WATER. Sliding velocity (peak): 0.1 m/s. Load (normal force): 5N. Test rig: TPZ-1 Tribometer.Running time: progressive increments of 10, 15, 30, 60, 180 and 300s. (stored in separate...
-
Wear in reciprocating siding friction tests. Ball-on-flat contact. Sintered alumina ceramics (98%). Lubricant - DISTILLED WATER. Specim. set K06
Dane BadawczeFriction and wear tests in ball-on-flat contact. Both specimens made of sintered alumina ceramics (98%) - self-mated contact.Linear reciprocating motion.Lubrication: DISTILLED WATER. Sliding velocity (peak): 0.1 m/s. Load (normal force): 5N. Test rig: TPZ-1 Tribometer.Running time: progressive increments of 10, 15, 30, 60, 180 and 300s. (stored in separate...
-
Wear in reciprocating siding friction tests. Ball-on-flat contact. Sintered alumina ceramics (98%). Lubricant - PARAFFIN OIL. Specim. set K08
Dane BadawczeFriction and wear tests in ball-on-flat contact. Both specimens made of sintered alumina ceramics (98%) - self-mated contact.Linear reciprocating motion.Lubrication: PARAFFIN OIL. Sliding velocity (peak): 0.1 m/s. Load (normal force): 5N. Test rig: TPZ-1 Tribometer.Running time: progressive increments of 10, 15, 30, 60, 180 and 300s. (stored in separate...
-
VIbration monitoring in reciprocating siding friction tests. Ball-on-flat contact. Sintered alumina ceramics (98%). No lubrication (DRY). Specim. set K03
Dane BadawczeVIbration monitoring in reciprocating siding friction tests in ball-on-flat contact. Both specimens made of sintered alumina ceramics (98%) - self-mated contact.Linear reciprocating motion.Lubrication: DRY. Sliding velocity (peak): 0.1 m/s. Load (normal force): 5N. Test rig: TPZ-1 Tribometer.Running time: progressive increments of 10, 15, 30, 60, 180...
-
VIbration monitoring in reciprocating siding friction tests. Ball-on-flat contact. Sintered alumina ceramics (98%). No lubrication (DRY). Specim. set K04
Dane BadawczeVIbration monitoring in reciprocating siding friction tests in ball-on-flat contact. Both specimens made of sintered alumina ceramics (98%) - self-mated contact.Linear reciprocating motion.Lubrication: DRY. Sliding velocity (peak): 0.1 m/s. Load (normal force): 5N. Test rig: TPZ-1 Tribometer.Running time: progressive increments of 10, 15, 30, 60, 180...
-
VIbration monitoring in reciprocating siding friction tests. Ball-on-flat contact. Sintered alumina ceramics (98%). No lubrication (DRY). Specim. set K01
Dane BadawczeVIbration monitoring in reciprocating siding friction tests in ball-on-flat contact. Both specimens made of sintered alumina ceramics (98%) - self-mated contact.Linear reciprocating motion.Lubrication: DRY. Sliding velocity (peak): 0.1 m/s. Load (normal force): 5N. Test rig: TPZ-1 Tribometer.Running time: progressive increments of 10, 15, 30, 60, 180...
-
VIbration monitoring in reciprocating siding friction tests. Ball-on-flat contact. Sintered alumina ceramics (98%). No lubrication (DRY). Specim. set K05
Dane BadawczeVIbration monitoring in reciprocating siding friction tests in ball-on-flat contact. Both specimens made of sintered alumina ceramics (98%) - self-mated contact.Linear reciprocating motion.Lubrication: DRY. Sliding velocity (peak): 0.1 m/s. Load (normal force): 5N. Test rig: TPZ-1 Tribometer.Running time: progressive increments of 10, 15, 30, 60, 180...
-
VIbration monitoring in reciprocating siding friction tests. Ball-on-flat contact. Sintered alumina ceramics (98%). Lubricant - DISTILLED WATER. Specim. set K02
Dane BadawczeVIbration monitoring in reciprocating siding friction tests in ball-on-flat contact. Both specimens made of sintered alumina ceramics (98%) - self-mated contact.Linear reciprocating motion.Lubrication: DISTILLED WATER. Sliding velocity (peak): 0.1 m/s. Load (normal force): 5N. Test rig: TPZ-1 Tribometer.Running time: progressive increments of 10, 15,...
-
VIbration monitoring in reciprocating siding friction tests. Ball-on-flat contact. Sintered alumina ceramics (98%). Lubricant - DISTILLED WATER. Specim. set K06
Dane BadawczeVIbration monitoring in reciprocating siding friction tests in ball-on-flat contact. Both specimens made of sintered alumina ceramics (98%) - self-mated contact.Linear reciprocating motion.Lubrication: DISTILLED WATER. Sliding velocity (peak): 0.1 m/s. Load (normal force): 5N. Test rig: TPZ-1 Tribometer.Running time: progressive increments of 10, 15,...
-
VIbration monitoring in reciprocating siding friction tests. Ball-on-flat contact. Sintered alumina ceramics (98%). Lubricant - DISTILLED WATER. Specim. set K07
Dane BadawczeVIbration monitoring in reciprocating siding friction tests in ball-on-flat contact. Both specimens made of sintered alumina ceramics (98%) - self-mated contact.Linear reciprocating motion.Lubrication: DISTILLED WATER. Sliding velocity (peak): 0.1 m/s. Load (normal force): 5N. Test rig: TPZ-1 Tribometer.Running time: progressive increments of 10, 15,...
-
VIbration monitoring in reciprocating siding friction tests. Ball-on-flat contact. Sintered alumina ceramics (98%). Lubricant - PARAFFIN OIL. Specim. set K08
Dane BadawczeVIbration monitoring in reciprocating siding friction tests in ball-on-flat contact. Both specimens made of sintered alumina ceramics (98%) - self-mated contact.Linear reciprocating motion.Lubrication: PARAFFIN OIL. Sliding velocity (peak): 0.1 m/s. Load (normal force): 5N. Test rig: TPZ-1 Tribometer.Running time: progressive increments of 10, 15, 30,...
-
Specimen running-in. Prep. to sliding friction tests. Ring-on-ring contact. Sintered alumina ceramics (98%). Paraffin oil lubrication. Specimen set #24 - #25.
Dane BadawczeSpecimen running-in procedure. Preparation to sliding friction tests in ring-on-ring contact. Sintered alumina ceramics (98%) in self-mated contact. Lubrication: paraffin oil. Sliding velocity: 0.2 m/s. Mean contact stress: 10 MPa. Test rig: PT-3 Tribometer. Specimen set #24 (upper, rotating), #25 (lower, non-rotating)CZ_PRZYS.MAT - accelerometerMOM_TAR.MAT...
-
Specimen running-in. Prep. to sliding friction tests. Ring-on-ring contact. Sintered alumina ceramics (98%). Paraffin oil lubrication. Specimen set #28 - #29.
Dane BadawczeSpecimen running-in procedure. Preparation to sliding friction tests in ring-on-ring contact. Sintered alumina ceramics (98%) in self-mated contact. Lubrication: paraffin oil. Sliding velocity: 0.2 m/s. Mean contact stress: 10 MPa. Test rig: PT-3 Tribometer. Specimen set #28 (upper, rotating), #29 (lower, non-rotating)CZ_PRZYS.MAT - accelerometerMOM_TAR.MAT...
-
Specimen running-in. Prep. to sliding friction tests. Ring-on-ring contact. Sintered alumina ceramics (98%). Paraffin oil lubrication. Specimen set #30 - #31.
Dane BadawczeSpecimen running-in procedure. Preparation to sliding friction tests in ring-on-ring contact. Sintered alumina ceramics (98%) in self-mated contact. Lubrication: paraffin oil. Sliding velocity: 0.2 m/s. Mean contact stress: 10 MPa. Test rig: PT-3 Tribometer. Specimen set #30 (upper, rotating), #31 (lower, non-rotating)CZ_PRZYS.MAT - accelerometerMOM_TAR.MAT...
-
Specimen running-in. Prep. to sliding friction tests. Ring-on-ring contact. Sintered alumina ceramics (98%). Paraffin oil lubrication. Specimen set #20 - #21.
Dane BadawczeSpecimen running-in procedure. Preparation to sliding friction tests in ring-on-ring contact. Sintered alumina ceramics (98%) in self-mated contact. Lubrication: paraffin oil. Sliding velocity: 0.2 m/s. Mean contact stress: 10 MPa. Test rig: PT-3 Tribometer. Specimen set #20 (upper, rotating), #21 (lower, non-rotating)CZ_PRZYS.MAT - accelerometerMOM_TAR.MAT...
-
Specimen running-in. Prep. to sliding friction tests. Ring-on-ring contact. Sintered alumina ceramics (98%). Paraffin oil lubrication. Specimen set #22 - #23.
Dane BadawczeSpecimen running-in procedure. Preparation to sliding friction tests in ring-on-ring contact. Sintered alumina ceramics (98%) in self-mated contact. Lubrication: paraffin oil. Sliding velocity: 0.2 m/s. Mean contact stress: 10 MPa. Test rig: PT-3 Tribometer. Specimen set #22 (upper, rotating), #23 (lower, non-rotating)CZ_PRZYS.MAT - accelerometerMOM_TAR.MAT...
-
Specimen running-in. Prep. to sliding friction tests. Ring-on-ring contact. Sintered alumina ceramics (98%). Paraffin oil lubrication. Specimen set #28 - #29.
Dane BadawczeSpecimen running-in procedure. Preparation to sliding friction tests in ring-on-ring contact. Sintered alumina ceramics (98%) in self-mated contact. Lubrication: paraffin oil. Sliding velocity: 0.2 m/s. Mean contact stress: 10 MPa. Test rig: PT-3 Tribometer. Specimen set #28 (upper, rotating), #29 (lower, non-rotating)CZ_PRZYS.MAT - accelerometerMOM_TAR.MAT...
-
Specimen running-in. Prep. to sliding friction tests. Ring-on-ring contact. Sintered alumina ceramics (98%). Paraffin oil lubrication. Specimen set #26 - #27.
Dane BadawczeSpecimen running-in procedure. Preparation to sliding friction tests in ring-on-ring contact. Sintered alumina ceramics (98%) in self-mated contact. Lubrication: paraffin oil. Sliding velocity: 0.2 m/s. Mean contact stress: 10 MPa. Test rig: PT-3 Tribometer. Specimen set #26 (upper, rotating), #27 (lower, non-rotating)CZ_PRZYS.MAT - accelerometerMOM_TAR.MAT...
-
Wear in reciprocating siding friction tests. Ball-on-flat contact. Sintered alumina ceramics (98%). Lubricant - PARAFFIN OIL. Specim. set K09 - full run
Dane BadawczeFriction and wear tests in ball-on-flat contact. Both specimens made of sintered alumina ceramics (98%) - self-mated contact.Linear reciprocating motion.Lubrication: PARAFFIN OIL. Sliding velocity (peak): 0.1 m/s. Load (normal force): 5N. Test rig: TPZ-1 Tribometer.Running time: progressive increments of 10, 15, 30, 60, 180 and 300s. (stored in separate...
-
Wear in reciprocating siding friction tests. Ball-on-flat contact. Sintered alumina ceramics (98%). Lubricant - PARAFFIN OIL. Specim. set K09 - pre-run (10s)
Dane BadawczeFriction and wear tests in ball-on-flat contact. Both specimens made of sintered alumina ceramics (98%) - self-mated contact.Linear reciprocating motion.Lubrication: PARAFFIN OIL. Sliding velocity (peak): 0.1 m/s. Load (normal force): 5N. Test rig: TPZ-1 Tribometer.Running time: progressive increments of 10, 15, 30, 60, 180 and 300s. (stored in separate...
-
VIbration monitoring in reciprocating siding friction tests. Ball-on-flat contact. Sintered alumina ceramics (98%). Lubricant - PARAFFIN OIL. Specim. set K09A - full-run
Dane BadawczeVIbration monitoring in reciprocating siding friction tests in ball-on-flat contact. Both specimens made of sintered alumina ceramics (98%) - self-mated contact.Linear reciprocating motion.Lubrication: PARAFFIN OIL. Sliding velocity (peak): 0.1 m/s. Load (normal force): 5N. Test rig: TPZ-1 Tribometer.Running time: progressive increments of 10, 15, 30,...
-
VIbration monitoring in reciprocating siding friction tests. Ball-on-flat contact. Sintered alumina ceramics (98%). Lubricant - PARAFFIN OIL. Specim. set K09 - pre-run
Dane BadawczeVIbration monitoring in reciprocating siding friction tests in ball-on-flat contact. Both specimens made of sintered alumina ceramics (98%) - self-mated contact.Linear reciprocating motion.Lubrication: PARAFFIN OIL. Sliding velocity (peak): 0.1 m/s. Load (normal force): 5N. Test rig: TPZ-1 Tribometer.Running time: progressive increments of 10, 15, 30,...
-
Optical microsc. images of wear marks on ball (JPG). Reciprocating siding friction tests. Ball-on-flat contact. Sintered alumina ceramics (98%). No lubrication (DRY). Specim. set K05
Dane BadawczeOptical microscope images of wear zone on the 5mm diam. ceramic ball used in tests as the fixed specimen.Friction and wear tests in ball-on-flat contact. Both specimens made of sintered alumina ceramics (98%) - self-mated contact.Linear reciprocating motion.Lubrication: DRY. Sliding velocity (peak): 0.1 m/s. Load (normal force): 5N. Test rig: TPZ-1...
-
Optical microsc. images of wear marks on ball (JPG). Reciprocating siding friction tests. Ball-on-flat contact. Sintered alumina ceramics (98%). No lubrication (DRY). Specim. set K03
Dane BadawczeOptical microscope images of wear zone on the 5mm diam. ceramic ball used in tests as the fixed specimen.Friction and wear tests in ball-on-flat contact. Both specimens made of sintered alumina ceramics (98%) - self-mated contact.Linear reciprocating motion.Lubrication: DRY. Sliding velocity (peak): 0.1 m/s. Load (normal force): 5N. Test rig: TPZ-1...
-
Optical microsc. images of wear marks on ball (JPG). Reciprocating siding friction tests. Ball-on-flat contact. Sintered alumina ceramics (98%). No lubrication (DRY). Specim. set K01
Dane BadawczeOptical microscope images of wear zone on the 5mm diam. ceramic ball used in tests as the fixed specimen.Friction and wear tests in ball-on-flat contact. Both specimens made of sintered alumina ceramics (98%) - self-mated contact.Linear reciprocating motion.Lubrication: DRY. Sliding velocity (peak): 0.1 m/s. Load (normal force): 5N. Test rig: TPZ-1...
-
Optical microsc. images of wear marks on ball (JPG). Reciprocating siding friction tests. Ball-on-flat contact. Sintered alumina ceramics (98%). No lubrication (DRY). Specim. set K04
Dane BadawczeOptical microscope images of wear zone on the 5mm diam. ceramic ball used in tests as the fixed specimen.Friction and wear tests in ball-on-flat contact. Both specimens made of sintered alumina ceramics (98%) - self-mated contact.Linear reciprocating motion.Lubrication: DRY. Sliding velocity (peak): 0.1 m/s. Load (normal force): 5N. Test rig: TPZ-1...
-
Optical microsc. images of wear marks on ball (JPG). Reciprocating siding friction tests. Ball-on-flat contact. Sintered alumina ceramics (98%). Lubricant - PARAFFIN OIL. Specim. set K09
Dane BadawczeOptical microscope images of wear zone on the 5mm diam. ceramic ball used in tests as the fixed specimen.Friction and wear tests in ball-on-flat contact. Both specimens made of sintered alumina ceramics (98%) - self-mated contact.Linear reciprocating motion.Lubrication: PARAFFIN OIL. Sliding velocity (peak): 0.1 m/s. Load (normal force): 5N. Test rig:...
-
Optical microsc. images of wear marks on ball (JPG). Reciprocating siding friction tests. Ball-on-flat contact. Sintered alumina ceramics (98%). Lubricant - DISTILLED WATER. Specim. set K06
Dane BadawczeOptical microscope images of wear zone on the 5mm diam. ceramic ball used in tests as the fixed specimen.Friction and wear tests in ball-on-flat contact. Both specimens made of sintered alumina ceramics (98%) - self-mated contact.Linear reciprocating motion.Lubrication: DISTILLED WATER. Sliding velocity (peak): 0.1 m/s. Load (normal force): 5N. Test...
-
Optical microsc. images of wear marks on ball (JPG). Reciprocating siding friction tests. Ball-on-flat contact. Sintered alumina ceramics (98%). Lubricant - DISTILLED WATER. Specim. set K07
Dane BadawczeOptical microscope images of wear zone on the 5mm diam. ceramic ball used in tests as the fixed specimen.Friction and wear tests in ball-on-flat contact. Both specimens made of sintered alumina ceramics (98%) - self-mated contact.Linear reciprocating motion.Lubrication: DISTILLED WATER. Sliding velocity (peak): 0.1 m/s. Load (normal force): 5N. Test...
-
Optical microsc. images of wear marks on ball (JPG). Reciprocating siding friction tests. Ball-on-flat contact. Sintered alumina ceramics (98%). Lubricant - DISTILLED WATER. Specim. set K06
Dane BadawczeOptical microscope images of wear zone on the 5mm diam. ceramic ball used in tests as the fixed specimen.Friction and wear tests in ball-on-flat contact. Both specimens made of sintered alumina ceramics (98%) - self-mated contact.Linear reciprocating motion.Lubrication: DISTILLED WATER. Sliding velocity (peak): 0.1 m/s. Load (normal force): 5N. Test...
-
Optical microsc. images of wear marks on ball (JPG). Reciprocating siding friction tests. Ball-on-flat contact. Sintered alumina ceramics (98%). Lubricant - PARAFFIN OIL. Specim. set K08
Dane BadawczeOptical microscope images of wear zone on the 5mm diam. ceramic ball used in tests as the fixed specimen.Friction and wear tests in ball-on-flat contact. Both specimens made of sintered alumina ceramics (98%) - self-mated contact.Linear reciprocating motion.Lubrication: PARAFFIN OIL. Sliding velocity (peak): 0.1 m/s. Load (normal force): 5N. Test rig:...
-
Optical microsc. images of wear marks on ball (JPG). Reciprocating siding friction tests. Ball-on-flat contact. Sintered alumina ceramics (98%). Lubricant - DISTILLED WATER. Specim. set K02
Dane BadawczeOptical microscope images of wear zone on the 5mm diam. ceramic ball used in tests as the fixed specimen.Friction and wear tests in ball-on-flat contact. Both specimens made of sintered alumina ceramics (98%) - self-mated contact.Linear reciprocating motion.Lubrication: DISTILLED WATER. Sliding velocity (peak): 0.1 m/s. Load (normal force): 5N. Test...
-
Wear in siding friction tests. Ring-on-ring contact. Sintered alumina ceramics (98%). Paraffin oil lubrication. Specim. sets #20-#21, #22-#23, #24-#25, #26-#27, #28-#29,#30 - #31. Run time: 4-8h.
Dane BadawczeWear in sliding friction tests in ring-on-ring contact. Sintered alumina ceramics (98%) in self-mated contact. Lubrication: paraffin oil. Sliding velocity: 0.2 m/s. Mean contact stress: 10 MPa. Test rig: PT-3 Tribometer.Running time: 4-8h.Specimen sets:Specim. sets (# [upper, rotating] - #[lower, non-rotating]):#20-#21, #22-#23, #24-#25, #26-#27,...
-
Wear in siding friction tests. Ring-on-ring contact. Sintered alumina ceramics (98%). Paraffin oil lubrication. Specim. sets #20-#21, #22-#23, #24-#25, #26-#27, #28-#29,#30 - #31. Run time: 0-4h.
Dane BadawczeWear in sliding friction tests in ring-on-ring contact. Sintered alumina ceramics (98%) in self-mated contact. Lubrication: paraffin oil. Sliding velocity: 0.2 m/s. Mean contact stress: 10 MPa. Test rig: PT-3 Tribometer.Running time: 0 - 4h.Specimen sets:Specim. sets (# [upper, rotating] - #[lower, non-rotating]):#20-#21, #22-#23, #24-#25, #26-#27,...