Filtry
wszystkich: 6
Wyniki wyszukiwania dla: UNICYCLIC GRAPHS
-
On domination multisubdivision number of unicyclic graphs
PublikacjaThe paper continues the interesting study of the domination subdivision number and the domination multisubdivision number. On the basis of the constructive characterization of the trees with the domination subdivision number equal to 3 given in [H. Aram, S.M. Sheikholeslami, O. Favaron, Domination subdivision number of trees, Discrete Math. 309 (2009), 622–628], we constructively characterize all connected unicyclic graphs with...
-
Unicyclic graphs with equal total and total outer-connected domination numbers
PublikacjaLet G = (V,E) be a graph without an isolated vertex. A set D ⊆ V (G) is a total dominating set if D is dominating and the in- duced subgraph G[D] does not contain an isolated vertex. The total domination number of G is the minimum cardinality of a total domi- nating set of G. A set D ⊆ V (G) is a total outer–connected dominating set if D is total dominating and the induced subgraph G[V (G)−D] is a connected graph. The total outer–connected...
-
Graphs with isolation number equal to one third of the order
PublikacjaA set D of vertices of a graph G is isolating if the set of vertices not in D and with no neighbor in D is independent. The isolation number of G, denoted by \iota(G) , is the minimum cardinality of an isolating set of G. It is known that \iota(G) \leq n/3 , if G is a connected graph of order n, , distinct from C_5 . The main result of this work is the characterisation of unicyclic and block graphs of order n with isolating number...
-
Influence of edge subdivision on the convex domination number
PublikacjaWe study the influence of edge subdivision on the convex domination number. We show that in general an edge subdivision can arbitrarily increase and arbitrarily decrease the convex domination number. We also find some bounds for unicyclic graphs and we investigate graphs G for which the convex domination number changes after subdivision of any edge in G.
-
Similarities and Differences Between the Vertex Cover Number and the Weakly Connected Domination Number of a Graph
PublikacjaA vertex cover of a graph G = (V, E) is a set X ⊂ V such that each edge of G is incident to at least one vertex of X. The ve cardinality of a vertex cover of G. A dominating set D ⊆ V is a weakly connected dominating set of G if the subgraph G[D]w = (N[D], Ew) weakly induced by D, is connected, where Ew is the set of all edges having at least one vertex in D. The weakly connected domination number γw(G) of G is the minimum cardinality...
-
On the hat problem on a graph
PublikacjaThe topic of this paper is the hat problem in which each of n players is uniformly and independently fitted with a blue or red hat. Then everybody can try to guess simultaneously his own hat color by looking at the hat colors of the other players. The team wins if at least one player guesses his hat color correctly, and no one guesses his hat color wrong; otherwise the team loses. The aim is to maximize the probability of winning....