Filtry
wszystkich: 25
Wyniki wyszukiwania dla: interval map
-
Dynamics of S-unimodal maps used in population modeling.
Dane BadawczeS-unimodal maps are maps of the interval with negative Schwarzian derivative and having only one turning point (such that the map is increasing to the left of the turning point and decreasing to the right of it). Theory of S-unimodal maps is now a well-developed branch of discrete dynamical systems, including famous Singer theorem which implies existence...
-
Uniform expansion estimates in the cubic map as a function of the parameter
Dane BadawczeThis dataset contains selected results of numerical computations described in the paper "Quantitative hyperbolicity estimates in one-dimensional dynamics" by S. Day, H. Kokubu, S. Luzzatto, K. Mischaikow, H. Oka, P. Pilarczyk, published in Nonlinearity, Vol. 21, No. 9 (2008), 1967-1987, doi: 10.1088/0951-7715/21/9/002.
-
Uniform expansion estimates in the quadratic map as a function of the parameter, with a large range of parameters
Dane BadawczeThis dataset contains selected results of numerical computations described in the paper "Quantitative hyperbolicity estimates in one-dimensional dynamics" by S. Day, H. Kokubu, S. Luzzatto, K. Mischaikow, H. Oka, P. Pilarczyk, published in Nonlinearity, Vol. 21, No. 9 (2008), 1967-1987, doi: 10.1088/0951-7715/21/9/002.
-
Uniform expansion estimates in the quadratic map as a function of the parameter, with a very small critical neighborhood
Dane BadawczeThis dataset contains selected results of numerical computations described in the paper "Quantitative hyperbolicity estimates in one-dimensional dynamics" by S. Day, H. Kokubu, S. Luzzatto, K. Mischaikow, H. Oka, P. Pilarczyk, published in Nonlinearity, Vol. 21, No. 9 (2008), 1967-1987, doi: 10.1088/0951-7715/21/9/002.
-
Uniform expansion estimates in the quadratic map as a function of the critical neighborhood size
Dane BadawczeThis dataset contains selected results of numerical computations described in the paper "Quantitative hyperbolicity estimates in one-dimensional dynamics" by S. Day, H. Kokubu, S. Luzzatto, K. Mischaikow, H. Oka, P. Pilarczyk, published in Nonlinearity, Vol. 21, No. 9 (2008), 1967-1987, doi: 10.1088/0951-7715/21/9/002.
-
Uniform expansion estimates in the unimodal map with γ=1.5 as a function of the parameter
Dane BadawczeThis dataset contains selected results of numerical computations described in the paper "Quantitative hyperbolicity estimates in one-dimensional dynamics" by S. Day, H. Kokubu, S. Luzzatto, K. Mischaikow, H. Oka, P. Pilarczyk, published in Nonlinearity, Vol. 21, No. 9 (2008), 1967-1987, doi: 10.1088/0951-7715/21/9/002.
-
Uniform expansion estimates in the unimodal map with γ=2.5 as a function of the parameter
Dane BadawczeThis dataset contains selected results of numerical computations described in the paper "Quantitative hyperbolicity estimates in one-dimensional dynamics" by S. Day, H. Kokubu, S. Luzzatto, K. Mischaikow, H. Oka, P. Pilarczyk, published in Nonlinearity, Vol. 21, No. 9 (2008), 1967-1987, doi: 10.1088/0951-7715/21/9/002.
-
Uniform expansion estimates in the quadratic map as a function of the parameter, with a small critical neighborhood
Dane BadawczeThis dataset contains selected results of numerical computations described in the paper "Quantitative hyperbolicity estimates in one-dimensional dynamics" by S. Day, H. Kokubu, S. Luzzatto, K. Mischaikow, H. Oka, P. Pilarczyk, published in Nonlinearity, Vol. 21, No. 9 (2008), 1967-1987, doi: 10.1088/0951-7715/21/9/002.
-
Uniform expansion estimates in the quadratic map as a function of the partition size, using Johnson’s algorithm
Dane BadawczeThis dataset contains selected results of numerical computations described in the paper "Quantitative hyperbolicity estimates in one-dimensional dynamics" by S. Day, H. Kokubu, S. Luzzatto, K. Mischaikow, H. Oka, P. Pilarczyk, published in Nonlinearity, Vol. 21, No. 9 (2008), 1967-1987, doi: 10.1088/0951-7715/21/9/002.
-
Uniform expansion estimates in the quadratic map as a function of the partition size, computing λ only
Dane BadawczeThis dataset contains selected results of numerical computations described in the paper "Quantitative hyperbolicity estimates in one-dimensional dynamics" by S. Day, H. Kokubu, S. Luzzatto, K. Mischaikow, H. Oka, P. Pilarczyk, published in Nonlinearity, Vol. 21, No. 9 (2008), 1967-1987, doi: 10.1088/0951-7715/21/9/002.
-
Uniform expansion estimates in the quadratic map as a function of the parameter, using the “uniform” partition type
Dane BadawczeThis dataset contains selected results of numerical computations described in the paper "Quantitative hyperbolicity estimates in one-dimensional dynamics" by S. Day, H. Kokubu, S. Luzzatto, K. Mischaikow, H. Oka, P. Pilarczyk, published in Nonlinearity, Vol. 21, No. 9 (2008), 1967-1987, doi: 10.1088/0951-7715/21/9/002.
-
Uniform expansion estimates in the quadratic map as a function of the parameter, using the “critical” partition type
Dane BadawczeThis dataset contains selected results of numerical computations described in the paper "Quantitative hyperbolicity estimates in one-dimensional dynamics" by S. Day, H. Kokubu, S. Luzzatto, K. Mischaikow, H. Oka, P. Pilarczyk, published in Nonlinearity, Vol. 21, No. 9 (2008), 1967-1987, doi: 10.1088/0951-7715/21/9/002.
-
Uniform expansion estimates in the quadratic map as a function of the parameter, using the “derivative” partition type
Dane BadawczeThis dataset contains selected results of numerical computations described in the paper "Quantitative hyperbolicity estimates in one-dimensional dynamics" by S. Day, H. Kokubu, S. Luzzatto, K. Mischaikow, H. Oka, P. Pilarczyk, published in Nonlinearity, Vol. 21, No. 9 (2008), 1967-1987, doi: 10.1088/0951-7715/21/9/002.
-
Uniform expansion estimates in the quadratic map as a function of the partition size, using the “derivative” partition type
Dane BadawczeThis dataset contains selected results of numerical computations described in the paper "Quantitative hyperbolicity estimates in one-dimensional dynamics" by S. Day, H. Kokubu, S. Luzzatto, K. Mischaikow, H. Oka, P. Pilarczyk, published in Nonlinearity, Vol. 21, No. 9 (2008), 1967-1987, doi: 10.1088/0951-7715/21/9/002.
-
Uniform expansion estimates in the quadratic map as a function of the partition size, using the “critical” partition type
Dane BadawczeThis dataset contains selected results of numerical computations described in the paper "Quantitative hyperbolicity estimates in one-dimensional dynamics" by S. Day, H. Kokubu, S. Luzzatto, K. Mischaikow, H. Oka, P. Pilarczyk, published in Nonlinearity, Vol. 21, No. 9 (2008), 1967-1987, doi: 10.1088/0951-7715/21/9/002.
-
Uniform expansion estimates in the quadratic map as a function of the partition size, using the Floyd–Warshall algorithm
Dane BadawczeThis dataset contains selected results of numerical computations described in the paper "Quantitative hyperbolicity estimates in one-dimensional dynamics" by S. Day, H. Kokubu, S. Luzzatto, K. Mischaikow, H. Oka, P. Pilarczyk, published in Nonlinearity, Vol. 21, No. 9 (2008), 1967-1987, doi: 10.1088/0951-7715/21/9/002.
-
All but one expanding Lorenz maps with slope greater than or equal to $\sqrt 2$ are leo
PublikacjaWe prove that with only one exception, all expanding Lorenz maps $f\colon[0,1]\to[0,1]$ with the derivative $f'(x)\ge\sqrt{2}$ (apart from a finite set of points) are locally eventually onto. Namely, for each such $f$ and each nonempty open interval $J\subset(0,1)$ there is $n\in\N$ such that $[0,1)\subset f^n(J)$. The mentioned exception is the map $f_0(x)=\sqrt{2}x+(2-\sqrt{2})/2 \pmod 1$. Recall that $f$ is an expanding Lorenz...
-
Uniform expansion estimates in the quadratic map with the smallest critical neighborhood for which the expansion exponent λ0 is positive
Dane BadawczeThis dataset contains selected results of numerical computations described in the paper "Quantitative hyperbolicity estimates in one-dimensional dynamics" by S. Day, H. Kokubu, S. Luzzatto, K. Mischaikow, H. Oka, P. Pilarczyk, published in Nonlinearity, Vol. 21, No. 9 (2008), 1967-1987, doi: 10.1088/0951-7715/21/9/002.
-
Uniform expansion estimates in the quadratic map with the smallest critical neighborhood for which the expansion exponent λ is positive
Dane BadawczeThis dataset contains selected results of numerical computations described in the paper "Quantitative hyperbolicity estimates in one-dimensional dynamics" by S. Day, H. Kokubu, S. Luzzatto, K. Mischaikow, H. Oka, P. Pilarczyk, published in Nonlinearity, Vol. 21, No. 9 (2008), 1967-1987, doi: 10.1088/0951-7715/21/9/002.
-
Uniform expansion estimates in the quadratic map with the smallest critical neighborhood for which the expansion exponent λ0 is greater than 0.1
Dane BadawczeThis dataset contains selected results of numerical computations described in the paper "Quantitative hyperbolicity estimates in one-dimensional dynamics" by S. Day, H. Kokubu, S. Luzzatto, K. Mischaikow, H. Oka, P. Pilarczyk, published in Nonlinearity, Vol. 21, No. 9 (2008), 1967-1987, doi: 10.1088/0951-7715/21/9/002.
-
Uniform expansion estimates in the quadratic map with the smallest critical neighborhood for which the expansion exponent λ is greater than 0.1
Dane BadawczeThis dataset contains selected results of numerical computations described in the paper "Quantitative hyperbolicity estimates in one-dimensional dynamics" by S. Day, H. Kokubu, S. Luzzatto, K. Mischaikow, H. Oka, P. Pilarczyk, published in Nonlinearity, Vol. 21, No. 9 (2008), 1967-1987, doi: 10.1088/0951-7715/21/9/002.
-
On the interspike-intervals of periodically-driven integrate-and-fire models
PublikacjaWe analyze properties of the firing map, which iterations give information about consecutive spikes, for periodically driven linear integrate-and-fire models. By considering locally integrable (thus in general not continuous) input functions, we generalize some results of other authors. In particular, we prove theorems concerning continuous dependence of the firing map on the input in suitable function spaces. Using mathematical...
-
Parameter values for topological chaos in the reduced Chialvo model
Dane BadawczeThe following dataset is connected with a map-based neuron model introduced by D. Chialvo (Chaos, Solitons & Fractals, 5 (3-4) 1995). The reduced version of this model is a one dimensional discrete system which describes the evolution of the membrane voltage when the value of the second variable, the recovery variable, is fixed. We have recently...
-
Analysis of Interspike-Intervals for the General Class of Integrate-and-Fire Models with Periodic Drive
PublikacjaWe study one-dimensional integrate-and-fire models of the general type x˙=F (t, x) and analyze properties of the firing map which iterations recover consecutive spike timings. We impose very week constraints for the regularity of the function F (t, x), e.g. often it suffices to assume that F is continuous. If additionally F is periodic in t, using mathematical study of the displacement sequence of an orientation preserving circle...
-
Stochastic intervals for the family of quadratic maps
Dane BadawczeNumerical analysis of chaotic dynamics is a challenging task. The one-parameter families of logistic maps and closely related quadratic maps f_a(x)=a-x^2 are well-known examples of such dynamical systems. Determining parameter values that yield stochastic-like dynamics is especially difficult, because although this set has positive Lebesgue measure,...