Publications
Filters
total: 378
Catalog Publications
Year 2024
-
angielski
PublicationA subset D of V (G) is a dominating set of a graph G if every vertex of V (G) − D has at least one neighbour in D; let the domination number γ(G) be the minimum cardinality among all dominating sets in G. We say that a graph G is γ-q-critical if subdividing any q edges results in a graph with domination number greater than γ(G) and there exists a set of q − 1 edges such that subdividing these edges results in a graph with domination...
-
Graphs with isolation number equal to one third of the order
PublicationA set D of vertices of a graph G is isolating if the set of vertices not in D and with no neighbor in D is independent. The isolation number of G, denoted by \iota(G) , is the minimum cardinality of an isolating set of G. It is known that \iota(G) \leq n/3 , if G is a connected graph of order n, , distinct from C_5 . The main result of this work is the characterisation of unicyclic and block graphs of order n with isolating number...
-
On the Fenchel–Moreau conjugate of G-function and the second derivative of the modular in anisotropic Orlicz spaces
PublicationIn this paper, we investigate the properties of the Fenchel–Moreau conjugate of G-function with respect to the coupling function c(x, A) = |A[x]2 |. We provide conditions that guarantee that the conjugate is also a G-function. We also show that if a G-function G is twice differentiable and its second derivative belongs to the Orlicz space generated by the Fenchel–Moreau conjugate of G then the modular generated by G is twice differentiable...
-
Rotating rod and ball
PublicationWe consider a mechanical system consisting of an infinite rod (a straight line) and a ball (a massless point) on the plane. The rod rotates uniformly around one of its points. The ball is reflected elastically when colliding with the rod and moves freely between consecutive hits. A sliding motion along the rod is also allowed. We prove the existence and uniqueness of the motion with a given position and velocity at a certain time...
-
THE REPRESENTATION PROBLEM FOR A DIFFUSION EQUATION AND FRACTAL R-L LADDER NETWORKS
PublicationThe representation problem is to prove that a discretization in space of the Fourier transform of a diffusion equation with a constant diffusion coefficient can be realized explicitly by an infinite fractal R-L ladder networks. We prove a rigidity theorem: a solution to the representation problem exists if and only if the space discretization is a geometric space scale and the fractal ladder networks is a Oustaloup one. In this...
Year 2023
-
Attractors of dissipative homeomorphisms of the infinite surface homeomorphic to a punctured sphere
PublicationA class of dissipative orientation preserving homeomorphisms of the infinite annulus,pairs of pants, or generally any infinite surface homeomorphic to a punctured sphere isconsidered. We prove that in some isotopy classes the local behavior of such homeomor-phisms at a fixed point, namely the existence of so-called inverse saddle, impacts thetopology of the attractor — it cannot be arcwise connected
-
Between therapy effect and false-positive result in animal experimentation
PublicationDespite the animal models’ complexity, researchers tend to reduce the number of animals in experiments for expenses and ethical concerns. This tendency makes the risk of false-positive results, as statistical significance, the primary criterion to validate findings, often fails if testing small samples. This study aims to highlight such risks using an example from experimental regenerative therapy and propose a machine-learning...
-
Distortion in the group of circle homeomorphisms
PublicationLet G be the group PAff+(R/Z) of piecewise affine circle homeomorphisms or the group Diff∞(R/Z) of smooth circle diffeomorphisms. A constructive proof that all irrational rotations are distorted in G is given.
-
Restrained differential of a graph
PublicationGiven a graph $G=(V(G), E(G))$ and a vertex $v\in V(G)$, the {open neighbourhood} of $v$ is defined to be $N(v)=\{u\in V(G) :\, uv\in E(G)\}$. The {external neighbourhood} of a set $S\subseteq V(G)$ is defined as $S_e=\left(\cup_{v\in S}N(v)\right)\setminus S$, while the \emph{restrained external neighbourhood} of $S$ is defined as $S_r=\{v\in S_e : N(v)\cap S_e\neq \varnothing\}$. The restrained differential of a graph $G$ is...
Year 2022
-
Marcinkiewicz Averages of Smooth Orthogonal Projections on Sphere
PublicationWe construct a single smooth orthogonal projection with desired localization whose average under a group action yields the decomposition of the identity operator. For any full rank lattice \Gamma ⊂ R^d , a smooth projection is localized in a neighborhood of an arbitrary precompact fundamental domain R^d / \Gamma. We also show the existence of a highly localized smooth orthogonal projection, whose Marcinkiewicz average under the...
Year 2021
-
Equivalence of equicontinuity concepts for Markov operators derived from a Schur-like property for spaces of measures
PublicationVarious equicontinuity properties for families of Markov operators have been – and still are – used in the study of existence and uniqueness of invariant probability for these operators, and of asymptotic stability. We prove a general result on equivalence of equicontinuity concepts. It allows comparing results in the literature and switching from one view on equicontinuity to another, which is technically convenient in proofs....
-
Isolation Number versus Domination Number of Trees
PublicationIf G=(VG,EG) is a graph of order n, we call S⊆VG an isolating set if the graph induced by VG−NG[S] contains no edges. The minimum cardinality of an isolating set of G is called the isolation number of G, and it is denoted by ι(G). It is known that ι(G)≤n3 and the bound is sharp. A subset S⊆VG is called dominating in G if NG[S]=VG. The minimum cardinality of a dominating set of G is the domination number, and it is denoted by γ(G)....
-
Matematyka na zajęciach z arkuszy kalkulacyjnych
PublicationNa zajęciach, zarówno w szkole, jak i na uczelni, do pokazania technicznej strony użycia arkusza kalkulacyjnego, tj.dostępnych funkcjonalności oraz organizacji danych, często wykorzystuje się proste zadania matematyczne. W naszym artykule zwracamy uwagę na potrzebę rozumienia przez użytkowników arkuszy kalkulacyjnych pojęć matematycznych, które umożliwiają odpowiednie przygotowanie danych oraz zinterpretowanie uzyskanych za pomocą...
-
On asymptotic periodicity of kernel double Markovian operators
PublicationIt is proved that a kernel, doubly Markovian operator T is asymptotically periodic if and only if its deterministic σ-field Σd(T)(equivalently Σd(T∗)) is finite. It follows that kernel doubly Markovian operator T is asymptotically periodic if and only if T∗ is asymptotically periodic.
-
Parseval Wavelet Frames on Riemannian Manifold
PublicationWe construct Parseval wavelet frames in L 2 (M) for a general Riemannian manifold M and we show the existence of wavelet unconditional frames in L p (M) for 1 < p < ∞. This is made possible thanks to smooth orthogonal projection decomposition of the identity operator on L 2 (M), which was recently proven by Bownik et al. (Potential Anal 54:41–94, 2021). We also show a characterization of Triebel–Lizorkin F sp,q (M) and Besov B...
-
Polish Adaptation of the Pregnancy-Related Anxiety Questionnaire—Revised 2 for All Pregnant Women
Publication -
Secure Italian domination in graphs
PublicationAn Italian dominating function (IDF) on a graph G is a function f:V(G)→{0,1,2} such that for every vertex v with f(v)=0, the total weight of f assigned to the neighbours of v is at least two, i.e., ∑u∈NG(v)f(u)≥2. For any function f:V(G)→{0,1,2} and any pair of adjacent vertices with f(v)=0 and u with f(u)>0, the function fu→v is defined by fu→v(v)=1, fu→v(u)=f(u)−1 and fu→v(x)=f(x) whenever x∈V(G)∖{u,v}. A secure Italian dominating...
-
Smooth Orthogonal Projections on Riemannian Manifold
PublicationWe construct a decomposition of the identity operator on a Riemannian manifold M as a sum of smooth orthogonal projections subordinate to an open cover of M. This extends a decomposition on the real line by smooth orthogonal projection due to Coifman and Meyer (C. R. Acad. Sci. Paris, S´er. I Math., 312(3), 259–261 1991) and Auscher, Weiss, Wickerhauser (1992), and a similar decomposition when M is the sphere by Bownik and Dziedziul (Const....
Year 2020
-
A space-efficient algorithm for computing the minimum cycle mean in a directed graph
PublicationAn algorithm is introduced for computing the minimum cycle mean in a strongly connected directed graph with n vertices and m arcs that requires O(n) working space. This is a considerable improvement for sparse graphs in comparison to the classical algorithms that require O(n^2) working space. The time complexity of the algorithm is still O(nm). An implementation in C++ is made publicly available at http://www.pawelpilarczyk.com/cymealg/.
-
Association of Genes Related to Oxidative Stress with the Extent of Coronary Atherosclerosis
PublicationOxidative stress is believed to play a critical role in atherosclerosis initiation and progression. In line with this, in a group of 1099 subjects, we determined eight single nucleotide polymorphisms (SNPs) related to oxidative stress (PON1 c.575A>G, MPO c.463G>A, SOD2 c.47T>C, GCLM c.590C>T, NOS3 c.894G>T, NOS3 c.786T>C, CYBA c.214C>T, and CYBA c.932A>G) and assessed the extent of atherosclerosis in coronary arteries based on...
-
Bounded solutions of odd nonautonomous ODE
PublicationBorsuk-Ulam type argument is used in order to prove exstence of nontrivial bounded solutions to some nonautonomous differential euations which are odd with respect to the spatial variable. A Poincare compactification trick is also applied.
-
Certified domination
PublicationImagine that we are given a set D of officials and a set W of civils. For each civil x ∈ W, there must be an official v ∈ D that can serve x, and whenever any such v is serving x, there must also be another civil w ∈ W that observes v, that is, w may act as a kind of witness, to avoid any abuse from v. What is the minimum number of officials to guarantee such a service, assuming a given social network? In this paper, we introduce...
-
Comments on various extensions of the Riemann–Liouville fractional derivatives : About the Leibniz and chain rule properties
PublicationStarting from the Riemann–Liouville derivative, many authors have built their own notion of fractional derivative in order to avoid some classical difficulties like a non zero derivative for a constant function or a rather complicated analogue of the Leibniz relation. Discussing in full generality the existence of such operator over continuous functions, we derive some obstruction Lemma which can be used to prove the triviality...
-
Computations of the least number of periodic points of smooth boundary-preserving self-maps of simply-connected manifolds
PublicationLet $r$ be an odd natural number, $M$ a compact simply-connected smooth manifold, $\dim M\geq 4$, such that its boundary $\partial M$ is also simply-connected. We consider $f$, a $C^1$ self-maps of $M$, preserving $\partial M$. In [G. Graff and J. Jezierski, Geom. Dedicata 187 (2017), 241-258] the smooth Nielsen type periodic number $D_r(f;M,\partial M)$ was defined and proved to be equal to the minimal number of $r$-periodic points...
-
Generalized Gradient Equivariant Multivalued Maps, Approximation and Degree
PublicationConsider the Euclidean space Rn with the orthogonal action of a compact Lie group G. We prove that a locally Lipschitz G-invariant mapping f from Rn to R can be uniformly approximated by G-invariant smooth mappings g in such a way that the gradient of g is a graph approximation of Clarke’s generalized gradient of f . This result enables a proper development of equivariant gradient degree theory for a class of set-valued gradient...
-
Generic invariant measures for iterated systems of interval homeomorphisms
PublicationIt is well known that iterated function systems generated by orientation preserving homeomorphisms of the unit interval with positive Lyapunov exponents at its ends admit a unique invariant measure on (0, 1) provided their action is minimal. With the additional requirement of continuous differentiability of maps on a fixed neighbourhood of {0,1} { 0 , 1 } , we present a metric in the space of such systems which renders it complete....
-
Homoclinics for singular strong force Lagrangian systems
PublicationWe study the existence of homoclinic solutions for a class of generalized Lagrangian systems in the plane, with a C1-smooth potential with a single well of infinite depth at a point ξ and a unique strict global maximum 0 at the origin.Under a strong force condition around the singular point ξ, via minimization of an action integral, we will prove the existence of at least two geometrically distinct homoclinic solutions.
-
Inverse shadowing and related measures
PublicationWe study various weaker forms of the inverse shadowing property for discrete dynamical systems on a smooth compact manifold. First, we introduce the so-called ergodic inverse shadowing property (Birkhoff averages of continuous functions along an exact trajectory and the approximating one are close). We demonstrate that this property implies the continuity of the set of invariant measures in the Hausdorff metric. We show that the...
-
Justification of quasi-stationary approximation in models of gene expression of a self-regulating protein
PublicationWe analyse a model of Hes1 gene transcription and protein synthesis with a negative feedback loop. The effect of multiple binding sites in the Hes1 promoter as well as the dimer formation process are taken into account. We consider three, possibly different, time scales connected with: (i) the process of binding to/dissolving from a binding site, (ii) formation and dissociation of dimers, (iii) production and degradation of Hes1...
-
Mountain pass solutions to Euler-Lagrange equations with general anisotropic operator
PublicationUsing the Mountain Pass Theorem we show that the problem \begin{equation*} \begin{cases} \frac{d}{dt}\Lcal_v(t,u(t),\dot u(t))=\Lcal_x(t,u(t),\dot u(t))\quad \text{ for a.e. }t\in[a,b]\\ u(a)=u(b)=0 \end{cases} \end{equation*} has a solution in anisotropic Orlicz-Sobolev space. We consider Lagrangian $\Lcal=F(t,x,v)+V(t,x)+\langle f(t), x\rangle$ with growth conditions determined by anisotropic G-function and some geometric conditions...
-
Newton’s Method for the McKendrick-von Foerster Equation
PublicationIn the paper we study an age-structured model which describes the dynamics of one population with growth, reproduction and mortality rates. We apply Newton’smethod to the McKendrick-von Foerster equation in the semigroup setting. We prove its first- and second-order convergence.
-
On homotopies of morphisms and admissible mappings
PublicationThe notion of homotopy in the category of morphisms introduced by G´orniewicz and Granas is proved to be equivalence relation which was not clear for years. Some simple properties are proved and a coincidence point index is described.
-
On the Existence of Homoclinic Type Solutions of a Class of Inhomogenous Second Order Hamiltonian Systems
PublicationWe show the existence of homoclinic type solutions of a class of inhomogenous second order Hamiltonian systems, where a C1-smooth potential satisfies a relaxed superquadratic growth condition, its gradient is bounded in the time variable, and a forcing term is sufficiently small in the space of square integrable functions. The idea of our proof is to approximate the original system by time-periodic ones, with larger and larger...
-
Reconfiguring Minimum Dominating Sets in Trees
PublicationWe provide tight bounds on the diameter of γ-graphs, which are reconfiguration graphs of the minimum dominating sets of a graph G. In particular, we prove that for any tree T of order n ≥ 3, the diameter of its γ-graph is at most n/2 in the single vertex replacement adjacency model, whereas in the slide adjacency model, it is at most 2(n − 1)/3. Our proof is constructive, leading to a simple linear-time algorithm for determining...
-
Regularity of weak solutions for aclass of elliptic PDEs in Orlicz-Sobolev spaces
PublicationWe consider the elliptic partial differential equation in the divergence form $$-\div(\nabla G(\nabla u(x))) t + F_u (x, u(x)) = 0,$$ where $G$ is a convex, anisotropic function satisfying certain growth and ellipticity conditions We prove that weak solutions in $W^{1,G}$ are in fact of class $W^{2,2}_{loc}\cap W^{1,\infty}_{loc}$.
-
Rigorous numerics for critical orbits in the quadratic family
PublicationWe develop algorithms and techniques to compute rigorous bounds for finite pieces of orbits of the critical points, for intervals of parameter values, in the quadratic family of one-dimensional maps fa(x)=a−x2. We illustrate the effectiveness of our approach by constructing a dynamically defined partition P of the parameter interval Ω=[1.4,2] into almost 4 million subintervals, for each of which we compute to high precision the...
-
The Palais–Smale condition for the Hamiltonian action on a mixed regularity space of loops in cotangent bundles and applications
PublicationWe show that the Hamiltonian action satisfies the Palais-Smale condition over a “mixed regular- ity” space of loops in cotangent bundles, namely the space of loops with regularity H^s, s ∈ (1/2, 1), in the baseand H^{1−s} in the fiber direction. As an application, we give a simplified proof of a theorem of Hofer-Viterbo on the existence of closed characteristic leaves for certain contact type hypersufaces in cotangent bundles.
-
Topological degree for equivariant gradient perturbations of an unbounded self-adjoint operator in Hilbert space
PublicationWe present a version of the equivariant gradient degree defined for equivariant gradient perturbations of an equivariant unbounded self-adjoint operator with purely discrete spectrum in Hilbert space. Two possible applications are discussed.
Year 2019
-
About the Noether’s theorem for fractional Lagrangian systems and a generalization of the classical Jost method of proof
PublicationRecently, the fractional Noether's theorem derived by G. Frederico and D.F.M. Torres in [10] was proved to be wrong by R.A.C. Ferreira and A.B. Malinowska in (see [7]) using a counterexample and doubts are stated about the validity of other Noether's type Theorem, in particular ([9],Theorem 32). However, the counterexample does not explain why and where the proof given in [10] does not work. In this paper, we make a detailed analysis...
-
Analizy epidemiologiczne w środowisku MATLAB/Octave
PublicationW artykule skonstruowano proste modele matematyczne rozprzestrzeniania się chorób zakaźnych oparte na równaniach różniczkowych oraz automatach komórkowych. Na przykładzie modeli SIS i SIR zilustrowano praktyczne zastosowanie pojęć matematycznych nauczanych w toku studiów. Za pomocą symulacji komputerowych, do których użyto pakietów matematycznych MATLAB i Octave, uzyskano wizualizacje tempa rozwoju danej choroby oraz...
-
Bernstein-type theorem for ϕ-Laplacian
PublicationIn this paper we obtain a solution to the second-order boundary value problem of the form \frac{d}{dt}\varPhi'(\dot{u})=f(t,u,\dot{u}), t\in [0,1], u\colon \mathbb {R}\to \mathbb {R} with Sturm–Liouville boundary conditions, where \varPhi\colon \mathbb {R}\to \mathbb {R} is a strictly convex, differentiable function and f\colon[0,1]\times \mathbb {R}\times \mathbb {R}\to \mathbb {R} is continuous and satisfies a suitable growth...
-
Clarke duality for Hamiltonian systems with nonstandard growth
PublicationWe consider the existence of periodic solutions to Hamiltonian systems with growth conditions involving G-function. We introduce the notion of symplectic G-function and provide relation for the growth of Hamiltonian in terms of certain constant CG associated to symplectic G-function G. We discuss an optimality of this constant for some special cases. We also provide applications to the Φ-laplacian type systems.
-
Degree product formula in the case of a finite group action
PublicationLet V, W be finite dimensional orthogonal representations of a finite group G. The equivariant degree with values in the Burnside ring of G has been studied extensively by many authors. We present a short proof of the degree product formula for local equivariant maps on V and W.
-
Detecting coupling directions with transcript mutual information: A comparative study
PublicationCausal relationships are important to understand the dynamics of coupled processes and, moreover, to influence or control the effects by acting on the causes. Among the different approaches to determine cause-effect relationships and, in particular, coupling directions in interacting random or deterministic processes, we focus in this paper on information-theoretic measures. So, we study in the theoretical part the difference between...
-
Folate/homocysteine metabolism and lung cancer risk among smokers
PublicationBackground: Folate and homocysteine are involved in DNA synthesis and methylation processes, which are deregulated during carcinogenesis. Objectives: The aim of this study was to assess the relationship between folate/homocysteine concentrations, the functional polymorphisms of folate/homocysteine genes and lung cancer risk among cigarette smokers. Study design: The study included 132 lung cancer patients and 396 controls from...
-
Generating sequences of Lefschetz numbers of iterates
PublicationDu, Huang and Li showed in 2003 that the class of Dold–Fermat sequences coincides with the class of Newton sequences, which are defined in terms of socalled generating sequences. The sequences of Lefschetz numbers of iterates form an important subclass of Dold–Fermat (thus also Newton) sequences. In this paper we characterize generating sequences of Lefschetz numbers of iterates.
-
Graphs with equal domination and certified domination numbers
PublicationA setDof vertices of a graphG= (VG,EG) is a dominating set ofGif every vertexinVG−Dis adjacent to at least one vertex inD. The domination number (upper dominationnumber, respectively) ofG, denoted byγ(G) (Γ(G), respectively), is the cardinality ofa smallest (largest minimal, respectively) dominating set ofG. A subsetD⊆VGis calleda certified dominating set ofGifDis a dominating set ofGand every vertex inDhas eitherzero...
-
Jak gładkość generuje punkty periodyczne
PublicationJednym z ważnych problemów teorii układów dynamicznych i topologii jest pytanie, jaka jest najmniejsza liczba punktów stałych lub periodycznych w danej klasie odwzorowań. Na przykład klasyczne twierdzenie Brouwera stwierdza, że każde ciągłe odwzorowanie kuli domkniętej w siebie ma przynajmniej jeden punkt stały. Szczególnie interesujące staje się powyższe pytanie w odniesieniu do klasy homotopii danego odwzorowania f. Artykuł poświęcony...
-
Matematyczne spojrzenie na reakcje chemiczne
PublicationModelowanie matematyczne jest pewnego rodzaju sztuką opisywania świata — zarówno w skali mikro jak i makro — za pomocą równań matematycznych (równań różniczkowych, różnicowych czy stochastycznych).
-
Mountain pass type periodic solutions for Euler–Lagrange equations in anisotropic Orlicz–Sobolev space
PublicationUsing the Mountain Pass Theorem, we establish the existence of periodic solution for Euler–Lagrange equation. Lagrangian consists of kinetic part (an anisotropic G-function), potential part and a forcing term. We consider two situations: G satisfying at infinity and globally. We give conditions on the growth of the potential near zero for both situations.