Marcin Krzywkowski - Publications - Bridge of Knowledge

Search

Filters

total: 37

  • Category
  • Year
  • Options

clear Chosen catalog filters disabled

Catalog Publications

Year 2016
  • Non-isolating bondage in graphs

    A dominating set of a graph $G = (V,E)$ is a set $D$ of vertices of $G$ such that every vertex of $V(G) \setminus D$ has a neighbor in $D$. The domination number of a graph $G$, denoted by $\gamma(G)$, is the minimum cardinality of a dominating set of $G$. The non-isolating bondage number of $G$, denoted by $b'(G)$, is the minimum cardinality among all sets of edges $E' \subseteq E$ such that $\delta(G-E') \ge 1$ and $\gamma(G-E')...

    Full text available to download

Year 2015
  • 2-outer-independent domination in graphs
    Publication

    We initiate the study of 2-outer-independent domination in graphs. A 2-outer-independent dominating set of a graph G is a set D of vertices of G such that every vertex of V(G)\D has at least two neighbors in D, and the set V(G)\D is independent. The 2-outer-independent domination number of a graph G is the minimum cardinality of a 2-outer-independent dominating set of G. We show that if a graph has minimum degree at least two,...

    Full text available to download

  • An upper bound for the double outer-independent domination number of a tree
    Publication

    A vertex of a graph is said to dominate itself and all of its neighbors. A double outer-independent dominating set of a graph G is a set D of vertices of G such that every vertex of G is dominated by at least two vertices of D, and the set V(G)\D is independent. The double outer-independent domination number of a graph G, denoted by γ_d^{oi}(G), is the minimum cardinality of a double outer-independent dominating set of G. We prove...

    Full text available to download

  • Bipartite theory of graphs: outer-independent domination
    Publication

    - NATIONAL ACADEMY SCIENCE LETTERS-INDIA - Year 2015

    Let $G = (V,E)$ be a bipartite graph with partite sets $X$ and $Y$. Two vertices of $X$ are $X$-adjacent if they have a common neighbor in $Y$, and they are $X$-independent otherwise. A subset $D \subseteq X$ is an $X$-outer-independent dominating set of $G$ if every vertex of $X \setminus D$ has an $X$-neighbor in $D$, and all vertices of $X \setminus D$ are pairwise $X$-independent. The $X$-outer-independent domination number...

    Full text to download in external service

  • On trees attaining an upper bound on the total domination number

    A total dominating set of a graph G is a set D of vertices of G such that every vertex of G has a neighbor in D. The total domination number of a graph G, denoted by γ_t(G), is the minimum cardinality of a total dominating set of G. Chellali and Haynes [Total and paired-domination numbers of a tree, AKCE International Journal of Graphs and Combinatorics 1 (2004), 69-75] established the following upper bound on the total domination...

    Full text to download in external service

  • On trees with equal 2-domination and 2-outer-independent domination numbers

    For a graph G = (V,E), a subset D \subseteq V(G) is a 2-dominating set if every vertex of V(G)\D$ has at least two neighbors in D, while it is a 2-outer-independent dominating set if additionally the set V(G)\D is independent. The 2-domination (2-outer-independent domination, respectively) number of G, is the minimum cardinality of a 2-dominating (2-outer-independent dominating, respectively) set of G. We characterize all trees...

    Full text available to download

  • On trees with equal domination and total outer-independent domination numbers
    Publication

    For a graph G=(V,E), a subset D subseteq V(G) is a dominating set if every vertex of V(G)D has a neighbor in D, while it is a total outer-independent dominating set if every vertex of G has a neighbor in D, and the set V(G)D is independent. The domination (total outer-independent domination, respectively) number of G is the minimum cardinality of a dominating (total outer-independent dominating, respectively) set of G. We characterize...

Year 2014
  • An algorithm for listing all minimal double dominating sets of a tree
    Publication

    We provide an algorithm for listing all minimal double dominating sets of a tree of order $n$ in time $\mathcal{O}(1.3248^n)$. This implies that every tree has at most $1.3248^n$ minimal double dominating sets. We also show that this bound is tight.

    Full text to download in external service

  • Bounds on the vertex-edge domination number of a tree
    Publication

    - COMPTES RENDUS MATHEMATIQUE - Year 2014

    A vertex-edge dominating set of a graph $G$ is a set $D$ of vertices of $G$ such that every edge of $G$ is incident with a vertex of $D$ or a vertex adjacent to a vertex of $D$. The vertex-edge domination number of a graph $G$, denoted by $\gamma_{ve}(T)$, is the minimum cardinality of a vertex-edge dominating set of $G$. We prove that for every tree $T$ of order $n \ge 3$ with $l$ leaves and $s$ support vertices we have $(n-l-s+3)/4...

    Full text available to download

  • Minimal double dominating sets in trees
    Publication

    - Year 2014

    We provide an algorithm for listing all minimal double dominating sets of a tree of order $n$ in time $\mathcal{O}(1.3248^n)$. This implies that every tree has at most $1.3248^n$ minimal double dominating sets. We also show that this bound is tight.

Year 2013
  • 2-bondage in graphs

    A 2-dominating set of a graph G=(V,E) is a set D of vertices of G such that every vertex of V(G)D has at least two neighbors in D. The 2-domination number of a graph G, denoted by gamma_2(G), is the minimum cardinality of a 2-dominating set of G. The 2-bondage number of G, denoted by b_2(G), is the minimum cardinality among all sets of edges E' subseteq E such that gamma_2(G-E') > gamma_2(G). If for every E' subseteq E we have...

    Full text to download in external service

  • An Algorithm for Listing All Minimal 2-Dominating Sets of a Tree

    We provide an algorithm for listing all minimal 2-dominating sets of a tree of order n in time O(1.3248n) . This implies that every tree has at most 1.3248 n minimal 2-dominating sets. We also show that this bound is tigh.

    Full text available to download

  • Minimal 2-dominating sets in Trees

    We provide an algorithm for listing all minimal 2-dominating sets of a tree of order n in time O(1.3247^n). This leads to that every tree has at most 1.3247^n minimal 2-dominating sets. We also show that thisbound is tight.

    Full text to download in external service

  • Non-isolating 2-bondage in graphs

    A 2-dominating set of a graph G=(V,E) is a set D of vertices of G such that every vertex of V(G)D has at least two neighbors in D. The 2-domination number of a graph G, denoted by gamma_2(G), is the minimum cardinality of a 2-dominating set of G. The non-isolating 2-bondage number of G, denoted by b_2'(G), is the minimum cardinality among all sets of edges E' subseteq E such that delta(G-E') >= 1 and gamma_2(G-E') > gamma_2(G)....

    Full text available to download

  • On the ratio between 2-domination and total outer-independent domination numbers of trees

    A 2-dominating set of a graph G is a set D of vertices of G such that every vertex of V(G)D has a at least two neighbors in D. A total outer-independent dominating set of a graph G is a set D of vertices of G such that every vertex of G has a neighbor in D, and the set V(G)D is independent. The 2-domination (total outer-independent domination, respectively) number of a graph G is the minimum cardinality of a 2-dominating (total...

    Full text to download in external service

  • On trees with double domination number equal to 2-domination number plus one

    A vertex of a graph is said to dominate itself and all of its neighbors. A subset D subseteq V(G) is a 2-dominating set of G if every vertex of V(G)D is dominated by at least two vertices of D, while it is a double dominating set of G if every vertex of G is dominated by at least two vertices of D. The 2-domination (double domination, respectively) number of a graph G is the minimum cardinality of a 2-dominating (double dominating,...

    Full text to download in external service

  • Trees having many minimal dominating sets

    We provide an algorithm for listing all minimal dominating sets of a tree of order n in time O(1.4656^n). This leads to that every tree has at most 1.4656^n minimal dominating sets. We also give an infinite family of trees of odd and even order for which the number of minimal dominating sets exceeds 1.4167^n, thus exceeding 2^{n/2}. This establishes a lower bound on the running time of an algorithm for listing all minimal dominating...

    Full text to download in external service

Year 2012
  • A construction for the hat problem on a directed graph
    Publication

    A team of n players plays the following game. After a strategy session, each player is randomly fitted with a blue or red hat. Then, without further communication, everybody can try to guess simultaneously his own hat color by looking at the hat colors of the other players. Visibility is defined by a directed graph; that is, vertices correspond to players, and a player can see each player to whom he is connected by an arc. The...

    Full text available to download

  • A lower bound on the double outer-independent domination number of a tree
    Publication

    A vertex of a graph is said to dominate itself and all of its neighbors. A double outer-independent dominating set of a graph G is a set D of vertices of G such that every vertex of G is dominated by at least two vertices of D, and the set V(G)D is independent. The double outer-independent domination number of a graph G, denoted by gamma_d^{oi}(G), is the minimum cardinality of a double outer-independent dominating set of G. We...

    Full text available to download

  • An upper bound on the total outer-independent domination number of a tree
    Publication

    A total outer-independent dominating set of a graph G=(V(G),E(G)) is a set D of vertices of G such that every vertex of G has a neighbor in D, and the set V(G)D is independent. The total outer-independent domination number of a graph G, denoted by gamma_t^{oi}(G), is the minimum cardinality of a total outer-independent dominating set of G. We prove that for every tree T of order n >= 4, with l leaves and s support vertices we have...

    Full text available to download

  • Double bondage in graphs
    Publication

    A vertex of a graph is said to dominate itself and all of its neighbors. A double dominating set of a graph G=(V,E) is a set D of vertices of G such that every vertex of G is dominated by at least two vertices of D. The double domination number of a graph G, denoted by gamma_d(G), is the minimum cardinality of a double dominating set of G. The double bondage number of G, denoted by b_d(G), is the minimum cardinality among all sets...

    Full text to download in external service

  • On the hat problem on a graph
    Publication

    The topic of this paper is the hat problem in which each of n players is uniformly and independently fitted with a blue or red hat. Then everybody can try to guess simultaneously his own hat color by looking at the hat colors of the other players. The team wins if at least one player guesses his hat color correctly, and no one guesses his hat color wrong; otherwise the team loses. The aim is to maximize the probability of winning....

    Full text available to download

  • On trees with double domination number equal to 2-outer-independent domination number plus one

    A vertex of a graph is said to dominate itself and all of its neighbors. A double dominating set of a graph G is a set D of vertices of G such that every vertex of G is dominated by at least two vertices of D. The double domination number of a graph G is the minimum cardinality of a double dominating set of G. For a graph G=(V,E), a subset D subseteq V(G) is a 2-dominating set if every vertex of V(G)D has at least two neighbors...

    Full text to download in external service

Year 2011
  • A lower bound on the total outer-independent domination number of a tree
    Publication

    A total outer-independent dominating set of a graph G is a set D of vertices of G such that every vertex of G has a neighbor in D, and the set V(G)D is independent. The total outer-independent domination number of a graph G, denoted by gamma_t^{oi}(G), is the minimum cardinality of a total outer-independent dominating set of G. We prove that for every nontrivial tree T of order n with l leaves we have gamma_t^{oi}(T) >= (2n-2l+2)/3,...

    Full text available to download

  • A more colorful hat problem

    The topic is the hat problem in which each of n players is randomly fitted with a blue or red hat. Then everybody can try to guess simultaneously his own hat color by looking at the hat colors of the other players. The team wins if at least one player guesses his hat color correctly, and no one guesses his hat color wrong; otherwise the team loses. The aim is to maximize the probability of winning. We consider a generalized hat...

    Full text available to download

  • An upper bound on the 2-outer-independent domination number of a tree
    Publication

    A 2-outer-independent dominating set of a graph G is a set D of vertices of G such that every vertex of V(G)D has a at least two neighbors in D, and the set V(G)D is independent. The 2-outer-independent domination number of a graph G, denoted by gamma_2^{oi}(G), is the minimum cardinality of a 2-outer-independent dominating set of G. We prove that for every nontrivial tree T of order n with l leaves we have gamma_2^{oi}(T) <= (n+l)/2,...

    Full text to download in external service

  • Hat problem on odd cycles

    The topic is the hat problem in which each of n players is randomly fitted with a blue or red hat. Then everybody can try to guess simultaneously his own hat color by looking at the hat colors of the other players. The team wins if at least one player guesses his hat color correctly, and no one guesses his hat color wrong; otherwise the team loses. The aim is to maximize the probability of a win. In this version every player can...

    Full text to download in external service

  • On trees with double domination number equal to total domination number plus one
    Publication

    A total dominating set of a graph G is a set D of vertices of G such that every vertex of G has a neighbor in D. A vertex of a graph is said to dominate itself and all of its neighbors. A double dominating set of a graph G is a set D of vertices of G such that every vertex of G is dominated by at least two vertices of D. The total (double, respectively) domination number of a graph G is the minimum cardinality of a total (double,...

    Full text available to download

  • The hat problem on a union of disjoint graphs
    Publication

    The topic is the hat problem in which each of n players is randomly fitted with a blue or red hat. Then everybody can try to guess simultaneously his own hat color by looking at the hat colors of the other players. The team wins if at least one player guesses his hat color correctly, and no one guesses his hat color wrong; otherwise the team loses. The aim is to maximize the probability of winning. In this version every player...

    Full text available to download

  • The hat problem on cycles on at least nine vertices
    Publication

    The topic is the hat problem in which each of n players is randomly fitted with a blue or red hat. Then everybody can try to guess simultaneously his own hat color by looking at the hat colors of the other players. The team wins if at least one player guesses his hat color correctly, and no one guesses his hat color wrong; otherwise the team loses. The aim is to maximize the probability of winning. In this version every player...

    Full text available to download

Year 2010
  • A modified hat problem
    Publication

    The topic of our paper is the hat problem in which each of n players is randomly fitted with a blue or red hat. Then everybody can try to guess simultaneously his own hat color by looking at the hat colors of the other players. The team wins if at least one player guesses his hat color correctly, and no one guesses his hat color wrong; otherwise the team loses. The aim is to maximize the probability of a win. There are known many...

    Full text available to download

  • An Alternative Proof of a Lower Bound on the 2-Domination Number of a Tree

    A 2-dominating set of a graph G is a set D of vertices of G such that every vertex not in D has a at least two neighbors in D. The 2-domination number of a graph G, denoted by gamma_2(G), is the minimum cardinality of a 2-dominating set of G. Fink and Jacobson [n-domination in graphs, Graph theory with applications to algorithms and computer science, Wiley, New York, 1985, 283-300] established the following lower bound on the 2-domination...

    Full text to download in external service

  • Hat problem on a graph
    Publication

    The topic of our paper is the hat problem. In that problem, each of n people is randomly fitted with a blue or red hat. Then everybody can try to guess simultaneously his own hat color looking at the hat colors of the other people. The team wins if at least one person guesses his hat color correctly and no one guesses his hat color wrong, otherwise the team loses. The aim is to maximize the probability of win. In this version every...

    Full text available to download

  • Hat problem on the cycle C4

    The topic of our paper is the hat problem. In that problem, each of n people is randomly tted with a blue or red hat. Then everybody can try to guess simultanously his own hat color looking at the hat colors of the other people. The team wins if at least one person guesses his hat color correctly and no one guesses his hat color wrong, otherwise the team loses. The aim is to maximize the probability of win. In this version every...

    Full text available to download

  • New Proofs of Some Fibonacci Identities

    Lucas proved in 1876 several identities for Fibonacci numbers. We give elementary and short proofs of them.

    Full text available to download

  • On the hat problem, its variations, and their applications

    The topic of our paper is the hat problem in which each of n players is randomly fitted with a blue or red hat. Then everybody can try to guess simultaneously his own hat color by looking at the hat colors of the other players. The team wins if at least one player guesses his hat color correctly, and no one guesses his hat color wrong; otherwise the team loses. The aim is to maximize the probability of a win. There are known many...

    Full text available to download

  • On the Hat Problem on the Cycle C7

    The topic is the hat problem in which each of n players is randomly fitted with a blue or red hat. Then everybody can try to guess simultaneously his own hat color by looking at the hat colors of the other players. The team wins if at least one player guesses his hat color correctly, and no one guesses his hat color wrong; otherwise the team loses. The aim is to maximize the probability of a win. In this version every player can...

    Full text available to download

seen 4514 times