Stability Assessment of Coastal Cliffs Incorporating Laser Scanning Technology and a Numerical Analysis - Publication - Bridge of Knowledge

Search

Stability Assessment of Coastal Cliffs Incorporating Laser Scanning Technology and a Numerical Analysis

Abstract

We investigated the cli coast in Jastrzebia Gora, Poland. The measurements that were taken between 2014 and 2018 by applying terrestrial, mobile, and airborne laser scanning describe a huge geometric modification involving dislocations in a 2.5 m range. Dierential maps and a volumetric change analysis made it possible to identify the most deformed cli’s location. Part of the monitoring of coastal change involved the measurement of a cli sector in order to determine the soil mass flow down the slope. A full geometric image of the cli was complemented by a stability assessment that incorporated numerical methods. The analysis showed that the stability coecients, assuming a particular soil strata layout and geotechnical parameters, are unsafely close to the limit value. Moreover, the numerical computations, which were performed under simplifying assumptions, were not able to capture a multitude of other random factors that may have an impact on the soil mass stability. Thus, displacements of both reinforced soil and gabions were detected that are intended to prevent the cli from deforming and to protect the infrastructure in its vicinity. The array of applied measurement methods provides a basis for the development of research aimed at optimization of applied tools, safety improvements, and a rapid reaction to threats.

Citations

  • 1 4

    CrossRef

  • 0

    Web of Science

  • 1 6

    Scopus

Cite as

Full text

download paper
downloaded 86 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY open in new tab

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
Remote Sensing no. 11, pages 1 - 30,
ISSN: 2072-4292
Language:
English
Publication year:
2019
Bibliographic description:
Tysiąc P., Ossowski R., Przyborski M.: Stability Assessment of Coastal Cliffs Incorporating Laser Scanning Technology and a Numerical Analysis// Remote Sensing. -Vol. 11, iss. 16 (2019), s.1-30
DOI:
Digital Object Identifier (open in new tab) 10.3390/rs11161951
Bibliography: test
  1. Whitaker, J.K. John Stuart Mill's Methodology. J. Political Econ. 1975, 83, 1033-1050. [CrossRef] open in new tab
  2. Yang, B.; Hawthorne, T.L.; Torres, H.; Feinman, M. Using Object-Oriented Classification for Coastal Management in the East Central Coast of Florida: A Quantitative Comparison between UAV, Satellite, and Aerial Data. Drones 2019, 3, 60. [CrossRef] open in new tab
  3. Xiong, L.; Wang, G.; Bao, Y.; Zhou, X.; Wang, K.; Liu, H.; Sun, X.; Zhao, R. A Rapid Terrestrial Laser Scanning Method for Coastal Erosion Studies: A Case Study at Freeport, Texas, USA. Sensors 2019, 19, 3252. [CrossRef] [PubMed] open in new tab
  4. Hu, B.; Chen, J.; Zhang, X. Monitoring the Land Subsidence Area in a Coastal Urban Area with InSAR and GNSS. Sensors 2019, 19, 3181. [CrossRef] [PubMed] open in new tab
  5. Mancini, F.; Castagnetti, C.; Rossi, P.; Dubbini, M.; Fazio, N.L.; Perrotti, M.; Lollino, P. An Integrated Procedure to Assess the Stability of Coastal Rocky Cliffs: From UAV Close-Range Photogrammetry to Geomechanical Finite Element Modeling. Remote Sens. 2017, 9, 1235. [CrossRef] open in new tab
  6. Calista, M.; Mascioli, F.; Menna, V.; Miccadei, E.; Piacentini, T. Recent Geomorphological Evolution and 3D Numerical Modelling of Soft Clastic Rock Cliffs in the Mid-Western Adriatic Sea (Abruzzo, Italy). Geosciences 2019, 9, 309. [CrossRef] open in new tab
  7. Gallina, V.; Torresan, S.; Zabeo, A.; Rizzi, J.; Carniel, S.; Sclavo, M.; Pizzol, L.; Marcomini, A.; Critto, A. Assessment of Climate Change Impacts in the North Adriatic Coastal Area. Part II: Consequences for Coastal Erosion Impacts at the Regional Scale. Water 2019, 11, 1300. [CrossRef] open in new tab
  8. Institute of Meteorology and Water Management, National Research Institute, Marine Branch GDYNIA: Assessment of Actual and Future Climate Changes on Polish Coastal Zone and Its Ecosystem. Institute of Meteorology and Water Management, National Research Institute, 2014. Available online: https://nfosigw.gov.pl/download/ gfx/nfosigw/pl/nfoekspertyzy/858/210/1/2014-424.pdf (accessed on 17 August 2019). (In Polish) open in new tab
  9. Jakusik, E.; Wójcik, R.; Pilarski, M.; Biernacik, D.; Miętus, M. Polish Coastal Zone Sea Level: Actual State and Prognoses, in: Climaic and Oceanographic Conditions in Poland and South Baltic (in Polish: Poziom Morza w Polskiej Strefie Brzegowej-Stan Obecny i Spodziewane Zmiany w Przeszłości w: Warunki Klimatyczne i Oceanograficzne w Polsce i na Bałtyku Południowym). Warsaw: IMiGW-PIB. 2012. Available online: http://klimat.imgw.pl/wp-content/uploads/2013/01/tom1.pdf (accessed on 17 August 2019).
  10. Subotowicz, W. A Preliminary Assessment of the Dynamics of the Cliff Shores of the Gdansk Region in the Light of Ground Photograph Interpretation; Polish Geographical Society: Warsaw, Poland, 1975; Volume 9, pp. 59-73. (In Polish)
  11. Massalski, W.; Subotowicz, W. A Study of Jastrzebia Gora Cliff Protection; Polish Maritime Office: Gdynia, Poland, 1992. (In Polish)
  12. Kostrzewski, A.; Zwolinski, Z.; Winowski, M.; Samołyk, M. Cliff top recession rate and cliff hazards for the sea coast of Wolin Island (Southern Baltic). Baltica 2015, 28, 109-120. [CrossRef] open in new tab
  13. Labuz, T.A.; Kowalewska-Kalkowska, H. Coastal erosion caused by the heavy storm surge of November 2004 in the southern Baltic Sea. Clim. Res. 2011, 48, 1572-1616. [CrossRef] open in new tab
  14. Poland. Information about Inspection Results: Coast Protecion on Hel Peninsula and Vistula Spit. LGD-4101-012/2013 Vol. 4/2015/P/13/141/LGD; 2011; (In Polish). Available online: https://www.nik.gov.pl/ kontrole/wyniki-kontroli-nik/pobierz,nik-p-13-141-brzegi-morskie,typ,kk.pdf (accessed on 17 August 2019). open in new tab
  15. Subotowicz, W. Geodynamic Investigation of Polish Cliffs and the Problem of Jastrzebia Gora Cliff protection (In Polish: Badania geodynamiczne klifów w Polsce i problem zabezpieczenia brzegu klifowego w Jastrzębiej Górze). In Inżynieria Morska i Geotechnika; IMOGEOR, Sp. z o. o.: Gdansk, Poland, 2000; Volume 5, pp. 252-257.
  16. Remote Sens. 2019, 11, 1951 28 of 30 open in new tab
  17. Kaminski, M.; Krawczyk, M.; Zientara, P. Recognition of geological structure of the Jastrzebia Gora cliff using resistivity tomography methods for landslide hazard (in Polish: Rozpoznanie budowy geologicznej klifu w Jastrzębiej Górze metodą tomografii elektrooporowej pod kątem zagrożenia osuwiskowego). Biult. Państ. Inst. Geolg. 2012, 452, 119-130. Available online: https://www.pgi.gov.pl/en/dokumenty-przegladarka/ publikacje-2/biuletyn-pig/biuletyn-452/1652-biul452-kaminski-krawczyk-pdf/file.html (accessed on 17 August 2019). open in new tab
  18. Abbas, M.A.; Luh, L.C.; Setan, H.; Majid, Z.; Chong, A.K.; Aspuri, A.; Idris, K.M.; Farid, M. Terrestrial Laser Scanners Pre-Processing: Registration and Georeferencing. J. Teknol. 2014, 71, 115-122. [CrossRef] open in new tab
  19. Marion, J.; Pauline, L.; Emmanuel, A.; Nicolas, L.D.; Mickael, B.; Véronique, C.; Rejanne, L.B.; Christophe, D. Adequacy of pseudo-direct georeferencing of terrestrial laser scanning data for coastal landscape surveying against indirect georeferencing. Eur. J. Remote Sens. 2017, 1, 155-165.
  20. Liadsky, J. Introduction to LIDAR. In Proceedings of the NPS Lidar Workshop, Boulder, CO, USA, 24 May 2007; Available online: https://studylib.net/doc/11752212/introduction-to-lidar-nps-lidar-workshop-may-24- -2007-joe (accessed on 17 August 2019).
  21. Petrie, G. Airborne Topographic Laser Scanners. Geoinformatics 2011, 2, 34-44. open in new tab
  22. Axelsson, P. Processing of laser scanner data-Algorithms and applications. Isprs J. Photogramm. Remote. Sens. 1999, 54, 138-147. [CrossRef] open in new tab
  23. Reutebuch, S.E.; McGaughey, R.J.; Andersen, H.E.; Carson, W.W. Accuracy of a high-resolution lidar terrain model under a conifer forest canopy. Can. J. Remote. Sens. 2015, 29, 527-535. [CrossRef] open in new tab
  24. Glennie, C.L.; Carter, W.E.; Shrestha, R.L.; Dietrich, W.E. Geodetic imaging with airborne LiDAR: The Earth's surface revealed. Rep. Prog. Phys. 2013. [CrossRef] open in new tab
  25. Telling, J.; Lyda, A.; Hartzell, P.; Glennie, C. Review of Earth science research using terrestrial laser scanning. Earth-Sci. Rev. 2017, 169, 35-68. [CrossRef] open in new tab
  26. Martin, H.; Wilm, J. Evaluation of Surface Registration Algorithms for PET MOTION correction. Master's Thesis, Technical University of Denmark, Kongens Lyngby, Denmark, June 2010.
  27. Warchol, A.; Hejmanowska, B. Example of the assessment of data integration accuracy on the base of airborne and terrestrial laser scanning. Archiwum Fotogrametrii Kartografii Teledetekcji 2011, 22, 411-421. (In Polish)
  28. Borkowski, A.; Jozkow, G. Filtering of airborne laser scanning data using a moving polynomial surface model (in Polish: Wykorzystanie wielomianowych powierzchni ruchomych w procesie filtracji danych pochodzących z lotniczego skaningu laserowego). Arch. Fotogram. Kartogr. Teledetekcji 2006, 16, 63-73.
  29. Pfeifer, N.; Mandlburger, G. Lidar data filtering and DTM generation. In Topographic Laser Scanning and Imaging: Principles and Processing; open in new tab
  30. Jie, S., Charles, K.T., Eds.; CSC Press: Boca Raton, FL, USA, 2008; pp. 306-334.
  31. Axelsson, P. DEM generation from laser scanner data using adaptive TIN models. Int. Arch. Photogramm. Remote Sens. 2000, 33, 110-117.
  32. Chen, Z.; Gao, B.; Devereux, B. State-of-the-Art: DTM Generation Using Airborne LIDAR Data. Sensors 2017, 17, 150. [CrossRef] [PubMed] open in new tab
  33. Tyagur, N.; Hollaus, M. Digital Terrain Models from Mobile Laser Scanning Data in Moravian karts. In Proceedings of the 2016 XXIII ISPRS Congress of the International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, Prague, Czech Republic, 12-19 July 2016; pp. 387-394. open in new tab
  34. Somma, R.; Matano, F.; Marino, E.; Caputo, T.; Esposito, G.; Caccavale, M.; Carlino, S.; Iuliano, S.; Mazzola, S.; Molisso, F.; et al. Application of Laser Scanning for Monitoring Coastal Cliff Instability in the Pozzuoli Bay, Coroglio Site, Posillipo Hill, Naples. Eng. Geol. Soc. Territ. 2015, 5, 687-690. open in new tab
  35. Bitenc, M.; Lindenbergh, R.; Khoshelham, K.; Pieter, W.A. Evaluation of a LIDAR Land-Based Mobile Mapping System for Monitoring Sandy Coasts. Remote Sens. 2011, 3, 1472-1491. [CrossRef] open in new tab
  36. Iván, P.; Higinio, G.; Pedro, A.; Julia, A. Land-Based Mobile Laser Scanning Systems: A Review. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2012, 38, 163-168.
  37. Barlow, J.; Gilhafm, J.; Ignacio, I.C. Kinematic analysis of sea cliff stability using UAV photogrammetry. Int. J. Remote. Sens. 2017, 38, 2464-2479. [CrossRef] open in new tab
  38. Kuhn, D.; Prufer, S. Coastal cliff monitoring and analysis of mass wasting processes with the application of terrestial laser scanning: A case study of Rugen, Germany. Geomorphology 2014, 213, 153-165. [CrossRef] open in new tab
  39. Olsen, M.J.; Johnston, E.; Driscoll, N.; Ashford, S.A.; Kuester, F. Terrestrial Laser Scanning of Extended Cliff Secions in Dynamic Environments: Parameter Analysis. J. Surv. Eng. 2009. [CrossRef] open in new tab
  40. Remote Sens. 2019, 11, 1951 29 of 30 open in new tab
  41. Ercoli, L.; Zimbardo, M.; Nocilla, N.; Nocilla, A.; Ponzoni, E. Evaluation of cliff recession in the Valle dei Templi in Agrigento (Sicily). Eng. Geol. 2015, 192, 129-138. [CrossRef] open in new tab
  42. Santos, O.F., Jr.; Amaral, R.F.; Scudelari, A.C. Failure Mechanisms of a Coastal Cliff in Rio Grande do Norte State, NE Brazil. J. Coast. Res. 2006, 2, 629-632. open in new tab
  43. Hapke, C.; Plant, N. Predicting coastal cliff erosion using a Bayesian probabilistic model. Mar. Geol. 2010, 278, 140-149. [CrossRef] open in new tab
  44. Suk, G.-H. Seoul Faces Increasing Risk of Landslides. The Korea Herald. 18 July 2013. Available online: http://www.koreaherald.com/view.php?ud=20130718000703 (accessed on 17 August 2019).
  45. Aleotti, P.; Chowdhury, R. Landslide hazard assessment: Summary review and new perspectives. Bull. Eng. Geol. Environ. 1999, 58, 21-44. [CrossRef] open in new tab
  46. Kechebour, B.E.L. Relation between Stability of Slope and the Urban Density: Case Study. Procedia Eng. 2015, 114, 824-831. [CrossRef] open in new tab
  47. Lee, S.; Chwae, U.; Min, K. Landslide susceptibility mapping by correlation between topography and geological structure: The Janghung area, Korea. Geomorphology 2002, 46, 149-162. [CrossRef] open in new tab
  48. Marchetti, D. Slope stability modelling of a sandstone cliff south of Livorno (Tuscany, Italy). WIT Trans. Inf. Commun. 2018. [CrossRef] open in new tab
  49. Wang, X.; Zhang, L.; Ding, J.; Meng, Q.; Iqbal, J.; Li, L.; Yang, Z. Comparison of rockfall susceptibility assessment at local and regional scale: A case study in the north Beijing (China). Env. Earth. Sci. 2014, 72, 4639-4652. [CrossRef] open in new tab
  50. Lee, S.; Lee, M.J.; Jung, H.S. Data Mining Approaches for Landslide Susceptibility Mapping in Umyeonsan, Seoul, in: South Korea. Appl. Sci. 2017, 7, 683. [CrossRef] open in new tab
  51. Wilk, B.; Noga, R. Numerical Analysis of Jastrzebia Gora Cliff Stability Based on Terrestial Laser Scanning (in Polish). Master Thesis, Gdansk University of Technology, Gdansk, Poland, 2017.
  52. Zhu, D.Y. A concise algorithm for computing the factor of safety using the Morgenstern-Price method. Can. Geotech. J. 2005, 42, 272-278. [CrossRef] open in new tab
  53. Morgenstern, N.R.; Price, V.E. The analysis of the stability of general slip surfaces. Geotechnique 1965, 15, 79-93. [CrossRef] open in new tab
  54. Smolczyk, U. (Ed.) Geotechnical Engineering Handbook; vol.1. Fundamentals; open in new tab
  55. Ernst & Sohn: Berlin, Germany, 2002; pp. 617-664.
  56. Goutw, T.L. Common Mistakes on the Application of Plaxis 2D in Analyzing Excavation Problems. Int. J. Appl. Eng. Res. 2014, 9, 8291-8311.
  57. Dawson, E.M.; Roth, W.H. Slope Stability Analysis with FLAC, FLAC and Numerical Modeling in Geomechanics. In Proceedings of the International Symposium, Atlanta, GA, USA, 7-12 July 1999; pp. 3-10. open in new tab
  58. Dian-Qing, L.; Zhi-Yong, Y.; Zi-Jun, C.; Siu-Kui, A.; Kok-kwang, P. System reliability analysis of slope stability using generalized Subset Simulation. Appl. Math. Model. 2017, 46, 650-654.
  59. Pradhan, B.M.S.; Pirasteh, S.; Buchroithner, M.F. Landslide hazard and risk analyses at a landslide prone catchment area using statistical based geospatial model. Int. J. Remote Sens. 2011, 32, 4075-4087. [CrossRef] open in new tab
  60. Jakub, S.; Paweł, B.; Artur, J.; Marek, P.; Paweł, T.; Aleksander, W.; Arthem, K.; Krzysztof, M.; Maciej, M. Maritime Laser Scanning As The Source For Spatial Data. Polish Marit. Res. 2015, 22, 9-14.
  61. Szulwic, J.; Tysiac, P. Mobile Laser Scanning Calibration on a Marine Platform. Pol. Maritmie Res. 2018. [CrossRef] open in new tab
  62. Pomerleau, F.; Colas, F.; Siegwart, R. A Review of Point Cloud Registration Algorithms for Mobile Robotics. Found. Trends Robot. 2015, 4, 1-104. [CrossRef] open in new tab
  63. He, Y.; Liang, B.; Yang, J.; Li, S.; He, J. An Iterative Closest Points Algorithm for Registration of 3D Laser Scanner Point Clouds with Geometric Features. Sensors 2017, 17, 1862. [CrossRef] [PubMed] open in new tab
  64. RiegI TLS Field Operation Manual and Workflow. UNAVCO Boulder CO. 2013. Available online: https: //kb.unavco.org/kb/article/riegl-tls-field-operation-manual-and-workflow-786.html (accessed on 31 January 2014). open in new tab
  65. Pepe, M. CORS architecture and evaluation of positioning by low-cost GNSS receiver. Geod. Cartogr. 2018, 44, 36-44. [CrossRef] open in new tab
  66. Mandlburger, G.; Pfennigbauer, M.; Pfeifer, N. Analyzing near water surface penetration in laser bathymetry-A case study at the River Pielach. ISPRS Annals of the Photogrammetry. Remote Sens. Spat. Inf. Sci. 2013, 5, W2. open in new tab
  67. Remote Sens. 2019, 11, 1951 open in new tab
  68. Jozkow, G. Improvement of Methods of Filtering Airborne Laser Scanning Data; Wroclaw University of Environmental and Life Sciences: Wroclaw, Poland, 2015. (In Polish)
  69. Abd-Elaty, I.; Eldeeb, H.; Vranayova, Z.; Zelenakova, M. Stability of Irrigation Canal Slopes Considering the Sea Level Rise and Dynamic Changes: Case Study El-Salam Canal, Egypt. Water 2019, 11, 1046. [CrossRef] open in new tab
  70. Ossowski, R.; Tysiac, P. A new approach of coastal cliff monitoring using Mobile Laser Scanning. Pol. Mari. Res. 2018, 25, 140-147. [CrossRef] open in new tab
  71. Paleczek, W. Analysis of the calculation accuracy of soil mass volume (in Polish). Zesz. Nauk. Politech. Częstochowskiej. Bud. 2015, 21, 365-371.
  72. Fredlund, D.G.; Krahn, J. Comparison of slope stability methods of analysis. Can. Geotech. J. 1977, 14, 429-439. [CrossRef] open in new tab
  73. Szulwic, J.; Marek, P.M.; Szczechowski, B.; Szubiak, W.; Widerski, T. Photogrammetric Development of The Threshold Water at The Dam on The Vistula River In Wloclawek From Unmanned Aerial Vehicles (UAV). open in new tab
  74. In Proceedings of the 15th International Multidisciplinary Scientific GeoConference SGEM 2015, Albena, Bulgaria, 18-24 June 2015; pp. 493-500. open in new tab
  75. © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). open in new tab
Verified by:
Gdańsk University of Technology

seen 267 times

Recommended for you

Meta Tags