Filters
total: 459
filtered: 139
Search results for: LOCAL IMPEDANCE SPECTROSCOPY (LIS)
-
Nonlinear impedance as a function of frequency for Bi2VO5.5 ceramic of thickness 2.88 mm was measured at high temperature range with impedance spectroscopy method
Open Research DataThe nonlinear electrical properties of Bi2VO5.5 ceramic of thickness 2.88 mm was measured by impedance spectroscopy method.
-
Linear impedance of 50(2Bi2O3-V2O5)-50SrB4O7 glass heat treated at 693 K measured with impedance spectroscopy method at low temperature region
Open Research DataThe linear electrcial properties of 50(2Bi2O3-V2O5)-50SrB4O7 glass heat treated at 693 K was measured by impedance spectroscopy method.
-
Linear impedance of 50(2Bi2O3-V2O5)-50SrB4O7 glass heat treated at 693 K measured with impedance spectroscopy method at high temperature region
Open Research DataThe linear electrcial properties of 50(2Bi2O3-V2O5)-50SrB4O7 glass heat treated at 693 K was measured by impedance spectroscopy method.
-
Nonlinear impedance of 40Bi2VO5.5-60SrB4O7 annealed glass at 593 K measured with impedance spectroscopy method at high temperature region
Open Research DataThe nonlinear electrical properties of 40Bi2VO5.5-60SrB4O7 glass annealed at 593 K was measured by impedance spectroscopy method.
-
The voltage across and current through the RC model object tested using pulse excitation in impedance spectroscopy measurement method
Open Research DataThe raw data (voltage across and current through RC model object ) obtained using pulse excitation EIS impedance spectroscopy measurement method. The data was acquired using 12-bit ADC (LTC1420) with sampling frequency changed in time segments. The 1V voltage pulse excitation duration was set to 0.1s and the total acqusition time was set to 1000s. For...
-
Nonlinear impedance of Bi2VO5.5 ceramic prepared by traditional melt quenching technique was measured with impedance spectroscopy method at low temperature region
Open Research DataThe nonlinear electrical properties of Bi2VO5.5 ceramic prepared by traditional melt quenching technique was measured by impedance spectroscopy method.
-
Nonlinear impedance as a function of temperature and frequency for Bi2VO5.5 ceramic of thickness 2.52 mm was measured at different A.C. voltage with impedance spectroscopy method
Open Research DataThe nonlinear electrical properties of Bi2VO5.5 ceramic of thickness 2.52 mm was measured by impedance spectroscopy method.
-
Nonlinear impedance as a function of A.C. voltage of Bi2VO5.5 ceramic of thickness 1.63 mm was measured with impedance spectroscopy method at high temperature region
Open Research DataThe nonlinear electrical properties of Bi2VO5.5 ceramic of thickness 1.63 mm was measured by impedance spectroscopy method.
-
Nonlinear impedance as a function of A.C. voltage of Bi2VO5.5 ceramic of thickness 4.03 mm was measured with impedance spectroscopy method at high temperature region
Open Research DataThe nonlinear electrical properties of Bi2VO5.5 ceramic of thickness 4.03 mm was measured by impedance spectroscopy method.
-
Nonlinear impedance as a function of A.C. voltage of Bi2VO5.5 ceramic of thickness 2.91 mm was measured with impedance spectroscopy method at high temperature region
Open Research DataThe nonlinear electrical properties of Bi2VO5.5 ceramic of thickness 2.91 mm was measured by impedance spectroscopy method.
-
Linear impedance of 50(2Bi2O3-V2O5)-50SrB4O7 glass-ceramic heat-treated at 613 K measured with impedance spectroscopy method at high temperature region
Open Research DataThe linear electrcial properties of 50(2Bi2O3-V2O5)-50SrB4O7 glass-ceramic heat-treated at 613 K was measured by impedance spectroscopy method.
-
Nonlinear impedance of as-quenched glass 40Bi2VO5.5-60SrB4O7 after full crystallization was measured with impedance spectroscopy method at high temperature region
Open Research DataThe nonlinear electrcial properties of as-quenched glass 40Bi2VO5.5-60SrB4O7 afetr full crystallization was measured by impedance spectroscopy method.
-
Nonlinear impedance of annealed and next fully crystallized 50Bi2VO5.5-50SrB4O7 glass measured with impedance spectroscopy method at high temperature region
Open Research DataThe nonlinear electrcial properties of annealed and next fully crystallized 50Bi2VO5.5-50SrB4O7 glass was measured by impedance spectroscopy method.
-
Nonlinear impedance of Bi2VO5.5 ceramic prepared by traditional melt quenching technique was measured with impedance spectroscopy method at high temperature region
Open Research DataThe nonlinear electrical properties of Bi2VO5.5 ceramic prepared by traditional melt quenching technique was measured by impedance spectroscopy method.
-
Nonlinear impedance of 50Bi2VO5.5-50SrB4O7 fully crystallized glass at 813 K measured with impedance spectroscopy method at high temperature region
Open Research DataThe nonlinear electrcial properties of 50Bi2VO5.5-50SrB4O7 fully crystallized glass was measured by impedance spectroscopy method.
-
Nonlinear impedance of 50Bi2VO5.5-50SrB4O7 partially crystallized glass at 613 K measured with impedance spectroscopy method at high temperature region
Open Research DataThe nonlinear electrcial properties of 50Bi2VO5.5-50SrB4O7 partially crystallized glass was measured by impedance spectroscopy method.
-
Linear impedance of 58(2Bi2O3-V2O5)-42SrB4O7 glass heat-treated for 3 hours at 693 K, measured with impedance spectroscopy method at low temperature region
Open Research DataThe linear electrcial properties of partially crystallized 58(2Bi2O3-V2O5)-42SrB4O7 glass was measured by impedance spectroscopy method.
-
Linear impedance of 58(2Bi2O3-V2O5)-42SrB4O7 glass heat-treated for 10 hours at 693 K, measured with impedance spectroscopy method at low temperature region
Open Research DataThe linear electrcial properties of partially crystallized 58(2Bi2O3-V2O5)-42SrB4O7 glass was measured by impedance spectroscopy method.
-
Linear impedance as a function of A.C. voltage for 50(2Bi2O3-V2O5)-50SrB4O7 glass heat treated at 693 K measured with impedance spectroscopy method at 273 K
Open Research DataThe linear electrcial properties as a function of A.C. voltage for 50(2Bi2O3-V2O5)-50SrB4O7 glass heat treated at 693 K was measured by impedance spectroscopy method.
-
Electrochemical impedance spectroscopy spectra measured at 800 °C, 750 °C and 700 °C on porous SrTi0.50Fe0.50O3-d oxygen electrode sintered at 800 °C
Open Research DataThis dataset contains results electrochemica impedance spectroscopy (EIS) of symmetrical cells with porous SrTi0.50Fe0.50O3-d oxygen electrodes sintered at 800 °C. EIS spectra were measured at 800 °C; 750°C and 700 °C (synthetic air). Results converted to electrode surfaces area and dived by two electrodes.
-
Electrochemical impedance spectroscopy spectra measured at 800 °C, 750 °C and 700 °C on porous SrTi0.65Fe0.35O3-d oxygen electrode sintered at 800 °C
Open Research DataThis dataset contains results electrochemica impedance spectroscopy (EIS) of symmetrical cells with porous SrTi0.65Fe0.35O3-d oxygen electrodes sintered at 800 °C. EIS spectra were measured at 800 °C; 750°C and 700 °C (synthetic air). Results converted to electrode surfaces area and dived by two electrodes.
-
Electrochemical impedance spectroscopy spectra measured at 800 °C, 750 °C and 700 °C on porous SrTi0.30Fe0.70O3-d oxygen electrode sintered at 800 °C
Open Research DataThis dataset contains results electrochemica impedance spectroscopy (EIS) of symmetrical cells with porous SrTi0.30Fe0.70O3-d oxygen electrodes sintered at 800 °C. EIS spectra were measured at 800 °C; 750°C and 700 °C (synthetic air). Results converted to electrode surfaces area and dived by two electrodes.
-
Nonlinear impedance as a function of A.C. voltage for fully crystallized 35Bi2VO5.5-65SrB4O7 glass measured with impedance spectroscopy method at high temperature region
Open Research DataThe nonlinear electrcial properties as a function of A.C. voltage for fully crystallized 35Bi2VO5.5-65SrB4O7 glass was measured by impedance spectroscopy method.
-
Nonlinear impedance of 40Bi2VO5.5-60SrB4O7 annealed glass at 473 K for 3 h measured with impedance spectroscopy method at high temperature region
Open Research DataThe nonlinear electrical properties of 40Bi2VO5.5-60SrB4O7 glass annealed at 473 K for 3h was measured by impedance spectroscopy method.
-
Nonlinear impedance as a function of A.C. voltage for fully crystallized 45Bi2VO5.5-55SrB4O7 glass measured with impedance spectroscopy method at high temperature region
Open Research DataThe nonlinear electrcial properties as a function of A.C. voltage for fully crystallized 45Bi2VO5.5-55SrB4O7 glass was measured by impedance spectroscopy method.
-
Nonlinear impedance of 50(2Bi2O3-V2O5)-50SrB4O7 glass heat treated at 693 K measured with impedance spectroscopy method at high temperature region
Open Research DataThe nonlinear electrcial properties of 50(2Bi2O3-V2O5)-50SrB4O7 glass heat treated at 693 K was measured by impedance spectroscopy method.
-
Nonlinear impedance of 50(2Bi2O3-V2O5)-50SrB4O7 glass heat treated two times measured with impedance spectroscopy method at high temperature region
Open Research DataThe nonlinear electrcial properties of 50(2Bi2O3-V2O5)-50SrB4O7 glass heat treated two times was measured by impedance spectroscopy method.
-
Nonlinear impedance of 50(2Bi2O3-V2O5)-50SrB4O7 glass-ceramic heat-treated at 813 K measured with impedance spectroscopy method at high temperature region
Open Research DataNonlinear electrcial properties of 50(2Bi2O3-V2O5)-50SrB4O7 glass-ceramic heat treated at 813 K was measured by impedance spectroscopy method.
-
Nonlinear impedance of 50(2Bi2O3-V2O5)-50SrB4O7 glass-ceramic heat-treated at 613 K measured with impedance spectroscopy method at high temperature region
Open Research DataNonlinear electrcial properties of 50(2Bi2O3-V2O5)-50SrB4O7 glass-ceramic heat treated at 613 K was measured by impedance spectroscopy method.
-
Nonlinear impedance of glass 40Bi2VO5.5-60SrB4O7 annealed at 593 K and next fully crystallized was measured with impedance spectroscopy method at high temperature region
Open Research DataThe nonlinear electrcial properties of glass 40Bi2VO5.5-60SrB4O7 annealed at 593 K and next fully crystallized was measured by impedance spectroscopy method.
-
Nonlinear impedance of 58(2Bi2O3-V2O5)-42SrB4O7 glass heat-treated for 3 hours at 693 K, measured with impedance spectroscopy method at low temperature region
Open Research DataThe nonlinear electrcial properties of partially crystallized 58(2Bi2O3-V2O5)-42SrB4O7 glass was measured by impedance spectroscopy method.
-
Nonlinear impedance of 58(2Bi2O3-V2O5)-42SrB4O7 glass heat-treated for 10 hours at 693 K, measured with impedance spectroscopy method at low temperature region
Open Research DataThe nonlinear electrcial properties of partially crystallized 58(2Bi2O3-V2O5)-42SrB4O7 glass was measured by impedance spectroscopy method.
-
Linear impedance as a function of A.C. voltage for 50(2Bi2O3-V2O5)-50SrB4O7 glass-ceramic heat-treated at 813 K measured with impedance spectroscopy method at high temperature region
Open Research DataThe linear electrcial properties as a function of A.C. voltage of 50(2Bi2O3-V2O5)-50SrB4O7 glass-ceramic heat treated at 813 K was measured by impedance spectroscopy method.
-
Nonlinear impedance of Bi2VO5.5 ceramic of thickness 2.52 mm (after second heat-treatment at 913 K) was measured at high temperature range with impedance spectroscopy method
Open Research DataThe nonlinear electrical properties of Bi2VO5.5 ceramic of thickness 2.52 mm (after second heat-treatment at 913 K) was measured by impedance spectroscopy method.
-
Nonlinear impedance as a function of A.C. voltage for annealed and next fully crystallized 50Bi2VO5.5-50SrB4O7 glass measured with impedance spectroscopy method at high temperature region
Open Research DataThe nonlinear electrcial properties as a function of A.C. voltage for annealed and next fully crystallized 50Bi2VO5.5-50SrB4O7 glass was measured by impedance spectroscopy method.
-
Nonlinear impedance of glass 40Bi2VO5.5-60SrB4O7 annealed at 473 K for 3h and next fully crystallized was measured with impedance spectroscopy method at high temperature region
Open Research DataThe nonlinear electrcial properties of glass 40Bi2VO5.5-60SrB4O7 annealed at 593 K and next fully crystallized was measured by impedance spectroscopy method.
-
Nonlinear impedance as a function of A.C. voltage for glass 40Bi2VO5.5-60SrB4O7 annealed at 593 K and next fully crystallized measured with impedance spectroscopy method at high temperature region
Open Research DataThe nonlinear electrcial properties as a function of A.C. voltage for annealed at 593 K and next fully crystallized 40Bi2VO5.5-60SrB4O7 glass was measured by impedance spectroscopy method.
-
Nonlinear impedance as a function of A.C. voltage and temperature for Bi2VO5.5 ceramic of thickness 2.52 mm (after first heat-treatment at 913 K) was measured at different frequencies with impedance spectroscopy method
Open Research DataThe nonlinear electrical properties of Bi2VO5.5 ceramic of thickness 2.52 mm was measured by impedance spectroscopy method.
-
Electrochemical impedance spectroscopy and Distribution of Relaxation Times analysis results for porous SrTi0.30Fe0.70O3-d oxygen electrode measured at 800 °C and 15% oxygen partial pressure
Open Research DataThis dataset contains electrochemical impedance spectroscopy and Distribution of Relaxation Times analysis results for symmetrical cell with porous SrTi0.30Fe0.70O3-d oxygen electrodes sintered at 800 °C. EIS spectra were measured at 800 °C and 15% of oxygen partial pressure. Spectra of two RCPE elements from equivalent circuit , are also included....
-
Electrochemical impedance spectroscopy and Distribution of Relaxation Times analysis results for porous SrTi0.30Fe0.70O3-d oxygen electrode measured at 600 °C and 15% oxygen partial pressure
Open Research DataThis dataset contains electrochemical impedance spectroscopy and Distribution of Relaxation Times results for symmetrical cell with porous SrTi0.30Fe0.70O3-d oxygen electrodes sintered at 800 °C. EIS spectra were measured at 600 °C and 15% of oxygen partial pressure. Spectra of two RCPE elements from equivalent circuit , are also included. Results converted...
-
Electrochemical impedance spectroscopy and Distribution of Relaxation Times analysis results for porous SrTi0.30Fe0.70O3-d oxygen electrode measured at 700 °C and 15% oxygen partial pressure
Open Research DataThis dataset contains electrochemical impedance spectroscopy and Distribution of Relaxation Times analysis results for symmetrical cell with porous SrTi0.30Fe0.70O3-d oxygen electrodes sintered at 800 °C. EIS spectra were measured at 700 °C and 15% of oxygen partial pressure. Spectra of two RCPE elements from equivalent circuit , are also included....
-
Electrochemical impedance spectroscopy and Distribution of Relaxation Times analysis results for porous SrTi0.30Fe0.70O3-d oxygen electrode measured at 700 °C and 100% oxygen partial pressure
Open Research DataThis dataset contains electrochemical impedance spectroscopy and Distribution of Relaxation Times analysis results for symmetrical cell with porous SrTi0.30Fe0.70O3-d oxygen electrodes sintered at 800 °C. EIS spectra were measured at 700 °C and 100% of oxygen partial pressure. Spectra of two RCPE elements from equivalent circuit , are also included....
-
Electrochemical impedance spectroscopy and Distribution of Relaxation Times analysis results for porous SrTi0.30Fe0.70O3-d oxygen electrode measured at 700 °C and 20% oxygen partial pressure
Open Research DataThis dataset contains electrochemical impedance spectroscopy and Distribution of Relaxation Times analysis results for symmetrical cell with porous SrTi0.30Fe0.70O3-d oxygen electrodes sintered at 800 °C. EIS spectra were measured at 700 °C and 20% of oxygen partial pressure. Spectra of two RCPE elements from equivalent circuit , are also included....
-
Electrochemical impedance spectroscopy and Distribution of Relaxation Times analysis results for porous SrTi0.30Fe0.70O3-d oxygen electrode measured at 700 °C and 5% oxygen partial pressure
Open Research DataThis dataset contains electrochemical impedance spectroscopy and Distribution of Relaxation Times analysis results for symmetrical cell with porous SrTi0.30Fe0.70O3-d oxygen electrodes sintered at 800 °C. EIS spectra were measured at 700 °C and 5% of oxygen partial pressure. Spectra of two RCPE elements from equivalent circuit , are also included. Results...
-
Nonlinear impedance as a function of A.C. voltage for glass 40Bi2VO5.5-60SrB4O7 annealed at 473 K for 3h and next fully crystallized measured with impedance spectroscopy method at high temperature region
Open Research DataThe nonlinear electrcial properties as a function of A.C. voltage for annealed at 473 K for 3h and next fully crystallized 40Bi2VO5.5-60SrB4O7 glass was measured by impedance spectroscopy method.
-
Electrochemical impedance spectroscopy measurements - conductivity vs. temperature and conductivity vs. oxygen partial pressure - BaCe0.6Zr0.2Y0.1Tb0.1O3-δ
Open Research DataThe dataset consists of two main catalogs consisting of measurement data: of the electrical conductivity of the BaCe0.6Zr0.2Y0.1Tb0.1O3-δ (BCZYTb) sample as a function of temperature and of the electrical conductivity as a function of oxygen partial pressure (pO2). Measurements as a function of temperature were carried out in dry and wet air (pH2O ~...
-
The AFM micrographs and impedance study of epoxy coatings after exposure in corrosive media
Open Research DataThe dataset contains Atomic Force Microscopy (AFM) images and local impedance measurements of epoxy organic coating used as anti-corrosion protection, before and after 2-month exposure to sodium chloride solution. Additionally, there two local impedance spectra recorded after the coating exposure. The first one was recorded on intact coating surface,...
-
Distribution of Relaxation Times analysis results of impedance measured in function of temperature on porous SrTi0.50Fe0.50O3-d oxygen electrode sintered at 800 °C
Open Research DataThis dataset contains results of Distribution of Relaxation Times analysis (DRT) of impedance of symmetrical cells with porous SrTi0.50Fe0.50O3-d oxygen electrodes sintered at 800 °C. Electrochemical impedance spectroscopy were measured at 800 °C; 750 °C and 700 °C (syntetic air). The DRTTools Matlab GUI, available from prof. Ciucci’s group, was used...
-
Distribution of Relaxation Times analysis results of impedance measured in function of temperature on porous SrTi0.30Fe0.70O3-d oxygen electrode sintered at 800 °C
Open Research DataThis dataset contains results of Distribution of Relaxation Times analysis (DRT) of impedance of symmetrical cells with porous SrTi0.30Fe0.70O3-d oxygen electrodes sintered at 800 °C. Electrochemical impedance spectroscopy were measured at 800 °C; 750 °C and 700 °C (syntetic air). The DRTTools Matlab GUI, available from prof. Ciucci’s group, was used...
-
Distribution of Relaxation Times analysis results of impedance measured in function of temperature on porous SrTi0.65Fe0.35O3-d oxygen electrode sintered at 800 °C
Open Research DataThis dataset contains results of Distribution of Relaxation Times analysis (DRT) of impedance of symmetrical cells with porous SrTi0.65Fe0.35O3-d oxygen electrodes sintered at 800 °C. Electrochemical impedance spectroscopy were measured at 800 °C; 750 °C and 700 °C (syntetic air). The DRTTools Matlab GUI, available from prof. Ciucci’s group, was used...