Filters
total: 31131
filtered: 1452
-
Catalog
Chosen catalog filters
displaying 1000 best results Help
Search results for: time-gating method
-
The generalization by simplification operator with Chrobak’s method of objects representing groups of buildings in Kartuzy district - scale 1:10000
Open Research DataThe process of automatic generalization is one of the elements of spatial data preparation for the purpose of creating digital cartographic studies. The presented data include a part of the process of generalization of building groups obtained from the national geodesy and cartography resource from BDOT10k (10k topographic database) [1].
-
The generalization by simplification operator with Chrobak’s method of objects representing groups of buildings in Gdańsk district - scale 1:10000
Open Research DataThe process of automatic generalization is one of the elements of spatial data preparation for the purpose of creating digital cartographic studies. The presented data include a part of the process of generalization of building groups obtained from the national geodesy and cartography resource from BDOT10k (10k topographic database) [1].
-
The generalization by simplification operator with Chrobak’s method of objects representing groups of buildings in Katowice district - scale 1:10000
Open Research DataThe process of automatic generalization is one of the elements of spatial data preparation for the purpose of creating digital cartographic studies. The presented data include a part of the process of generalization of building groups obtained from the national geodesy and cartography resource from BDOT10k (10k topographic database) [1].
-
The generalization by simplification operator with Chrobak’s method of objects representing groups of buildings in Katowice district - scale 1:25000
Open Research DataThe process of automatic generalization is one of the elements of spatial data preparation for the purpose of creating digital cartographic studies. The presented data include a part of the process of generalization of building groups obtained from the national geodesy and cartography resource from BDOT10k (10k topographic database) [1].
-
The generalization by simplification operator with Chrobak’s method of objects representing groups of buildings in Gdańsk district - scale 1:25000
Open Research DataThe process of automatic generalization is one of the elements of spatial data preparation for the purpose of creating digital cartographic studies. The presented data include a part of the process of generalization of building groups obtained from the national geodesy and cartography resource from BDOT10k (10k topographic database) [1].
-
The generalization by simplification operator with Chrobak’s method of objects representing groups of buildings in Kartuzy district - scale 1:25000
Open Research DataThe process of automatic generalization is one of the elements of spatial data preparation for the purpose of creating digital cartographic studies. The presented data include a part of the process of generalization of building groups obtained from the national geodesy and cartography resource from BDOT10k (10k topographic database) [1].
-
Nonlinear impedance of 58(2Bi2O3-V2O5)-42SrB4O7 glass measured with impedance spectroscopy method at low temperature region
Open Research DataThe nonlinear electrcial properties of 58(2Bi2O3-V2O5)-42SrB4O7 glass was measured by impedance spectroscopy method.
-
Nonlinear impedance of 5(2Bi2O3-V2O5)-95SrB4O7 glass measured with impedance spectroscopy method at high temperature region
Open Research DataThe nonlinear electrcial properties of 5(2Bi2O3-V2O5)-95SrB4O7 glass was measured by impedance spectroscopy method.
-
The generalization by simplification operator with Sester’s method of objects representing groups of buildings in Kartuzy district - scale 1:10000
Open Research DataThe process of automatic generalization is one of the elements of spatial data preparation for the purpose of creating digital cartographic studies. The presented data include a part of the process of generalization of building groups obtained from the national geodesy and cartography resource from BDOT10k (10k topographic database) [1].
-
The generalization by simplification operator with Sester’s method of objects representing groups of buildings in Gdańsk district - scale 1:10000
Open Research DataThe process of automatic generalization is one of the elements of spatial data preparation for the purpose of creating digital cartographic studies. The presented data include a part of the process of generalization of building groups obtained from the national geodesy and cartography resource from BDOT10k (10k topographic database) [1].
-
The generalization by simplification operator with Sester’s method of objects representing groups of buildings in Kartuzy district - scale 1:25000
Open Research DataThe process of automatic generalization is one of the elements of spatial data preparation for the purpose of creating digital cartographic studies. The presented data include a part of the process of generalization of building groups obtained from the national geodesy and cartography resource from BDOT10k (10k topographic database) [1].
-
Thermal properties of strontium–borate glasses and glass-ceramics containing bismuth and vanadium oxides measured with DSC method
Open Research DataThermal properties of strontium–borate glasses and glass-ceramics containing bismuth and vanadium oxides was measured by DSC.
-
Linear impedance of Bi2VO5.5 glass-ceramic annealed at 423 K measured with impedance spectroscopy method at low temperature region
Open Research DataThe linear electrical properties of Bi2VO5.5 glass-ceramic annealed at 423 K prepared by traditional melt quenching technique was measured by impedance spectroscopy method.
-
Linear impedance of 0.5Si3N4–99.5(40Na2O-20CaO-40P2O5) glass measured with impedance spectroscopy method at low temperature region
Open Research DataThe linear electrical properties of 0.5Si3N4–99.5(40Na2O-20CaO-40P2O5) glass was measured by impedance spectroscopy method.
-
Linear impedance of 1Si3N4–99(40Na2O-20CaO-40P2O5) glass measured with impedance spectroscopy method at low temperature region
Open Research DataThe linear electrical properties of 1Si3N4–99(40Na2O-20CaO-40P2O5) glass was measured by impedance spectroscopy method.
-
Linear impedance of 2Si3N4–98(40Na2O-20CaO-40P2O5) glass measured with impedance spectroscopy method at low temperature region
Open Research DataThe linear electrical properties of 2Si3N4–98(40Na2O-20CaO-40P2O5) glass was measured by impedance spectroscopy method.
-
Linear impedance of 1SiO2–99(40Na2O-20CaO-40P2O5) glass measured with impedance spectroscopy method at low temperature region
Open Research DataThe linear electrical properties of 1SiO2–99(40Na2O-20CaO-40P2O5) glass was measured by impedance spectroscopy method.
-
Nonlinear impedance of 50Bi2VO5.5-50SrB4O7 annealed glass at 593 K measured with impedance spectroscopy method at high temperature region
Open Research DataThe nonlinear electrcial properties of 50Bi2VO5.5-50SrB4O7 annealed glass was measured by impedance spectroscopy method.
-
Nonlinear impedance of 40Bi2VO5.5-60SrB4O7 annealed glass at 593 K measured with impedance spectroscopy method at high temperature region
Open Research DataThe nonlinear electrical properties of 40Bi2VO5.5-60SrB4O7 glass annealed at 593 K was measured by impedance spectroscopy method.
-
Nonlinear impedance of Bi2VO5.5 glass-ceramic annealed at 423 K was measured with impedance spectroscopy method at high temperature region
Open Research DataThe nonlinear electrical properties of Bi2VO5.5 glass-ceramic annealed at 423 K was measured by impedance spectroscopy method.
-
The structure of strontium–borate glasses and glass-ceramics containing bismuth and vanadium oxides measured with X-ray diffraction method
Open Research DataThe structure of strontium–borate glasses and glass-ceramics containing bismuth and vanadium oxides was measured by XRD.
-
Nonlinear impedance of as-quenched glass 40Bi2VO5.5-60SrB4O7 after full crystallization was measured with impedance spectroscopy method at high temperature region
Open Research DataThe nonlinear electrcial properties of as-quenched glass 40Bi2VO5.5-60SrB4O7 afetr full crystallization was measured by impedance spectroscopy method.
-
Nonlinear impedance of annealed and next fully crystallized 50Bi2VO5.5-50SrB4O7 glass measured with impedance spectroscopy method at high temperature region
Open Research DataThe nonlinear electrcial properties of annealed and next fully crystallized 50Bi2VO5.5-50SrB4O7 glass was measured by impedance spectroscopy method.
-
Nonlinear impedance of 50Bi2VO5.5-50SrB4O7 fully crystallized glass at 813 K measured with impedance spectroscopy method at high temperature region
Open Research DataThe nonlinear electrcial properties of 50Bi2VO5.5-50SrB4O7 fully crystallized glass was measured by impedance spectroscopy method.
-
Nonlinear impedance of 50Bi2VO5.5-50SrB4O7 partially crystallized glass at 613 K measured with impedance spectroscopy method at high temperature region
Open Research DataThe nonlinear electrcial properties of 50Bi2VO5.5-50SrB4O7 partially crystallized glass was measured by impedance spectroscopy method.
-
Linear impedance of Bi2VO5.5 ceramic prepared by traditional melt quenching technique measured with impedance spectroscopy method at low temperature region
Open Research DataThe linear electrical properties of Bi2VO5.5 ceramic prepared by traditional melt quenching technique was measured by impedance spectroscopy method.
-
Nonlinear impedance of Bi2VO5.5 glass-ceramic heat-treated at 913 K was measured with impedance spectroscopy method at high temperature region
Open Research DataThe nonlinear electrical properties of Bi2VO5.5 glass-ceramic heat-treated at 913 K was measured by impedance spectroscopy method.
-
Nonlinear impedance of Bi2VO5.5 glass-ceramic heat-treated at 913 K was measured with impedance spectroscopy method at low temperature region
Open Research DataThe nonlinear electrical properties of Bi2VO5.5 glass-ceramic heat-treated at 913 K was measured by impedance spectroscopy method.
-
Nonlinear impedance as a function of A.C. voltage of Bi2VO5.5 ceramic of thickness 2.88 mm was measured at 693 K with impedance spectroscopy method
Open Research DataThe nonlinear electrical properties of Bi2VO5.5 ceramic of thickness 2.88 mm was measured by impedance spectroscopy method.
-
Nonlinear impedance as a function of frequency for Bi2VO5.5 ceramic of thickness 2.88 mm was measured at high temperature range with impedance spectroscopy method
Open Research DataThe nonlinear electrical properties of Bi2VO5.5 ceramic of thickness 2.88 mm was measured by impedance spectroscopy method.
-
Nonlinear impedance of Bi2VO5.5 ceramic prepared by traditional melt quenching technique was measured with impedance spectroscopy method at low temperature region
Open Research DataThe nonlinear electrical properties of Bi2VO5.5 ceramic prepared by traditional melt quenching technique was measured by impedance spectroscopy method.
-
Nonlinear impedance of Bi2VO5.5 ceramic prepared by traditional melt quenching technique was measured with impedance spectroscopy method at high temperature region
Open Research DataThe nonlinear electrical properties of Bi2VO5.5 ceramic prepared by traditional melt quenching technique was measured by impedance spectroscopy method.
-
The generalization by simplification operator with Chrobak’s method of objects representing groups of buildings in Gdańsk district - scale 1:10000. Data from OSM
Open Research DataThe process of automatic generalization is one of the elements of spatial data preparation for the purpose of creating digital cartographic studies. The presented data include a part of the process of generalization of building groups obtained from the Open Street Map databases (OSM) [1].
-
The generalization by simplification operator with Chrobak’s method of objects representing groups of buildings in Kartuzy district - scale 1:10000. Data from OSM.
Open Research DataThe process of automatic generalization is one of the elements of spatial data preparation for the purpose of creating digital cartographic studies. The presented data include a part of the process of generalization of building groups obtained from the Open Street Map databases (OSM) [1].
-
Nonlinear impedance as a function of A.C. voltage for fully crystallized 35Bi2VO5.5-65SrB4O7 glass measured with impedance spectroscopy method at high temperature region
Open Research DataThe nonlinear electrcial properties as a function of A.C. voltage for fully crystallized 35Bi2VO5.5-65SrB4O7 glass was measured by impedance spectroscopy method.
-
Nonlinear impedance of 40Bi2VO5.5-60SrB4O7 annealed glass at 473 K for 3 h measured with impedance spectroscopy method at high temperature region
Open Research DataThe nonlinear electrical properties of 40Bi2VO5.5-60SrB4O7 glass annealed at 473 K for 3h was measured by impedance spectroscopy method.
-
Nonlinear impedance as a function of A.C. voltage for fully crystallized 45Bi2VO5.5-55SrB4O7 glass measured with impedance spectroscopy method at high temperature region
Open Research DataThe nonlinear electrcial properties as a function of A.C. voltage for fully crystallized 45Bi2VO5.5-55SrB4O7 glass was measured by impedance spectroscopy method.
-
Linear impedance of 50(2Bi2O3-V2O5)-50SrB4O7 glass heat treated two times measured with impedance spectroscopy method at low temperatures
Open Research DataThe linear electrcial properties of 50(2Bi2O3-V2O5)-50SrB4O7 glass heat treated two times was measured by impedance spectroscopy method.
-
Nonlinear impedance as a function of temperature and frequency for Bi2VO5.5 ceramic of thickness 2.52 mm was measured at different A.C. voltage with impedance spectroscopy method
Open Research DataThe nonlinear electrical properties of Bi2VO5.5 ceramic of thickness 2.52 mm was measured by impedance spectroscopy method.
-
Nonlinear impedance as a function of A.C. voltage of Bi2VO5.5 ceramic of thickness 1.63 mm was measured with impedance spectroscopy method at high temperature region
Open Research DataThe nonlinear electrical properties of Bi2VO5.5 ceramic of thickness 1.63 mm was measured by impedance spectroscopy method.
-
Nonlinear impedance as a function of A.C. voltage of Bi2VO5.5 ceramic of thickness 4.03 mm was measured with impedance spectroscopy method at high temperature region
Open Research DataThe nonlinear electrical properties of Bi2VO5.5 ceramic of thickness 4.03 mm was measured by impedance spectroscopy method.
-
Nonlinear impedance as a function of A.C. voltage of Bi2VO5.5 ceramic of thickness 2.91 mm was measured with impedance spectroscopy method at high temperature region
Open Research DataThe nonlinear electrical properties of Bi2VO5.5 ceramic of thickness 2.91 mm was measured by impedance spectroscopy method.
-
The generalization by simplification operator with Sester’s method of objects representing groups of buildings in Gdańsk district - scale 1:10000. Data from OSM
Open Research DataThe process of automatic generalization is one of the elements of spatial data preparation for the purpose of creating digital cartographic studies. The presented data include a part of the process of generalization of building groups obtained from the Open Street Map databases (OSM) [1].
-
The generalization by simplification operator with Sester’s method of objects representing groups of buildings in Kartuzy district - scale 1:10000. Data from OSM
Open Research DataThe process of automatic generalization is one of the elements of spatial data preparation for the purpose of creating digital cartographic studies. The presented data include a part of the process of generalization of building groups obtained from the Open Street Map databases (OSM) [1].
-
Nonlinear impedance of glass 40Bi2VO5.5-60SrB4O7 annealed at 593 K and next fully crystallized was measured with impedance spectroscopy method at high temperature region
Open Research DataThe nonlinear electrcial properties of glass 40Bi2VO5.5-60SrB4O7 annealed at 593 K and next fully crystallized was measured by impedance spectroscopy method.
-
Linear impedance of 50(2Bi2O3-V2O5)-50SrB4O7 glass heat treated at 693 K measured with impedance spectroscopy method at low temperature region
Open Research DataThe linear electrcial properties of 50(2Bi2O3-V2O5)-50SrB4O7 glass heat treated at 693 K was measured by impedance spectroscopy method.
-
Linear impedance of 50(2Bi2O3-V2O5)-50SrB4O7 glass heat treated at 693 K measured with impedance spectroscopy method at high temperature region
Open Research DataThe linear electrcial properties of 50(2Bi2O3-V2O5)-50SrB4O7 glass heat treated at 693 K was measured by impedance spectroscopy method.
-
Nonlinear impedance of 50(2Bi2O3-V2O5)-50SrB4O7 glass heat treated at 693 K measured with impedance spectroscopy method at high temperature region
Open Research DataThe nonlinear electrcial properties of 50(2Bi2O3-V2O5)-50SrB4O7 glass heat treated at 693 K was measured by impedance spectroscopy method.
-
Nonlinear impedance of 50(2Bi2O3-V2O5)-50SrB4O7 glass heat treated two times measured with impedance spectroscopy method at high temperature region
Open Research DataThe nonlinear electrcial properties of 50(2Bi2O3-V2O5)-50SrB4O7 glass heat treated two times was measured by impedance spectroscopy method.
-
Nonlinear impedance as a function of A.C. voltage for annealed and next fully crystallized 50Bi2VO5.5-50SrB4O7 glass measured with impedance spectroscopy method at high temperature region
Open Research DataThe nonlinear electrcial properties as a function of A.C. voltage for annealed and next fully crystallized 50Bi2VO5.5-50SrB4O7 glass was measured by impedance spectroscopy method.