Search results for: (1,2)-DOMINATION NUMBER - Bridge of Knowledge

Search

Search results for: (1,2)-DOMINATION NUMBER

Search results for: (1,2)-DOMINATION NUMBER

  • On trees with double domination number equal to 2-domination number plus one

    A vertex of a graph is said to dominate itself and all of its neighbors. A subset D subseteq V(G) is a 2-dominating set of G if every vertex of V(G)D is dominated by at least two vertices of D, while it is a double dominating set of G if every vertex of G is dominated by at least two vertices of D. The 2-domination (double domination, respectively) number of a graph G is the minimum cardinality of a 2-dominating (double dominating,...

    Full text to download in external service

  • On trees with double domination number equal to total domination number plus one

    Publication

    A total dominating set of a graph G is a set D of vertices of G such that every vertex of G has a neighbor in D. A vertex of a graph is said to dominate itself and all of its neighbors. A double dominating set of a graph G is a set D of vertices of G such that every vertex of G is dominated by at least two vertices of D. The total (double, respectively) domination number of a graph G is the minimum cardinality of a total (double,...

    Full text available to download

  • Isolation Number versus Domination Number of Trees

    Publication
    • M. Lemańska
    • M. J. Souto-Salorio
    • A. Dapena
    • F. Vazquez-Araujo

    - Mathematics - Year 2021

    If G=(VG,EG) is a graph of order n, we call S⊆VG an isolating set if the graph induced by VG−NG[S] contains no edges. The minimum cardinality of an isolating set of G is called the isolation number of G, and it is denoted by ι(G). It is known that ι(G)≤n3 and the bound is sharp. A subset S⊆VG is called dominating in G if NG[S]=VG. The minimum cardinality of a dominating set of G is the domination number, and it is denoted by γ(G)....

    Full text available to download

  • Paired domination versus domination and packing number in graphs

    Publication

    Given a graph G = (V(G), E(G)), the size of a minimum dominating set, minimum paired dominating set, and a minimum total dominating set of a graph G are denoted by γ (G), γpr(G), and γt(G), respectively. For a positive integer k, a k-packing in G is a set S ⊆ V(G) such that for every pair of distinct vertices u and v in S, the distance between u and v is at least k + 1. The k-packing number is the order of a largest kpacking and...

    Full text available to download

  • On trees with double domination number equal to 2-outer-independent domination number plus one

    A vertex of a graph is said to dominate itself and all of its neighbors. A double dominating set of a graph G is a set D of vertices of G such that every vertex of G is dominated by at least two vertices of D. The double domination number of a graph G is the minimum cardinality of a double dominating set of G. For a graph G=(V,E), a subset D subseteq V(G) is a 2-dominating set if every vertex of V(G)D has at least two neighbors...

    Full text to download in external service

  • Complexity Issues on of Secondary Domination Number

    Publication

    - ALGORITHMICA - Year 2023

    In this paper we study the computational complexity issues of the problem of secondary domination (known also as (1, 2)-domination) in several graph classes. We also study the computational complexity of the problem of determining whether the domination and secondary domination numbers are equal. In particular, we study the influence of triangles and vertices of degree 1 on these numbers. Also, an optimal algorithm for finding...

    Full text available to download

  • TOTAL DOMINATION MULTISUBDIVISION NUMBER OF A GRAPH

    Publication

    - Discussiones Mathematicae Graph Theory - Year 2015

    The domination multisubdivision number of a nonempty graph G was defined in [3] as the minimum positive integer k such that there exists an edge which must be subdivided k times to increase the domination number of G. Similarly we define the total domination multisubdivision number msd_t (G) of a graph G and we show that for any connected graph G of order at least two, msd_t (G) ≤ 3. We show that for trees the total domination...

    Full text available to download

  • On domination multisubdivision number of unicyclic graphs

    Publication

    The paper continues the interesting study of the domination subdivision number and the domination multisubdivision number. On the basis of the constructive characterization of the trees with the domination subdivision number equal to 3 given in [H. Aram, S.M. Sheikholeslami, O. Favaron, Domination subdivision number of trees, Discrete Math. 309 (2009), 622–628], we constructively characterize all connected unicyclic graphs with...

    Full text available to download

  • The convex domination subdivision number of a graph

    Publication

    Let G = (V;E) be a simple graph. A set D\subset V is a dominating set of G if every vertex in V - D has at least one neighbor in D. The distance d_G(u, v) between two vertices u and v is the length of a shortest (u, v)-path in G. An (u, v)-path of length d_G(u; v) is called an (u, v)-geodesic. A set X\subset V is convex in G if vertices from all (a, b)-geodesics belong to X for any two vertices a, b \in X. A set X is a convex dominating...

    Full text available to download

  • Coronas and Domination Subdivision Number of a Graph

    Publication

    In this paper, for a graph G and a family of partitions P of vertex neighborhoods of G, we define the general corona G ◦P of G. Among several properties of this new operation, we focus on application general coronas to a new kind of characterization of trees with the domination subdivision number equal to 3.

    Full text available to download

  • On the total restrained domination number of a graph

    W pracy przedstawione są ograniczenia i własności liczby dominowania podwójnie totalnego.

    Full text available to download

  • The outer-connected domination number of a graph

    W pracy została zdefiniowana liczba dominowania zewnętrznie spójnego i przedstawiono jej podstawowe własności.

    Full text available to download

  • Lower bound on the domination number of a tree.

    Publication

    - Year 2004

    W pracy przedstawiono dolne ograniczenie na liczbę dominowania w drzewach oraz przedstawiono pełną charakterystykę grafów ekstremalnych.

  • On the doubly connected domination number of a graph

    W pracy została zdefiniowana liczba dominowania podwójnie spójnego i przedstawiono jej podstawowe własności.

    Full text available to download

  • Influence of edge subdivision on the convex domination number

    We study the influence of edge subdivision on the convex domination number. We show that in general an edge subdivision can arbitrarily increase and arbitrarily decrease the convex domination number. We also find some bounds for unicyclic graphs and we investigate graphs G for which the convex domination number changes after subdivision of any edge in G.

    Full text available to download

  • Weakly convex domination subdivision number of a graph

    Publication

    - FILOMAT - Year 2016

    A set X is weakly convex in G if for any two vertices a; b \in X there exists an ab–geodesic such that all of its vertices belong to X. A set X \subset V is a weakly convex dominating set if X is weakly convex and dominating. The weakly convex domination number \gamma_wcon(G) of a graph G equals the minimum cardinality of a weakly convex dominating set in G. The weakly convex domination subdivision number sd_wcon (G) is the minimum...

    Full text available to download

  • On the super domination number of lexicographic product graphs

    Publication

    - DISCRETE APPLIED MATHEMATICS - Year 2019

    The neighbourhood of a vertexvof a graphGis the setN(v) of all verticesadjacent tovinG. ForD⊆V(G) we defineD=V(G)\D. A setD⊆V(G) is called a super dominating set if for every vertexu∈D, there existsv∈Dsuch thatN(v)∩D={u}. The super domination number ofGis theminimum cardinality among all super dominating sets inG. In this article weobtain closed formulas and tight bounds for the super dominating number oflexicographic product...

    Full text available to download

  • Bounds on the vertex-edge domination number of a tree

    Publication

    - COMPTES RENDUS MATHEMATIQUE - Year 2014

    A vertex-edge dominating set of a graph $G$ is a set $D$ of vertices of $G$ such that every edge of $G$ is incident with a vertex of $D$ or a vertex adjacent to a vertex of $D$. The vertex-edge domination number of a graph $G$, denoted by $\gamma_{ve}(T)$, is the minimum cardinality of a vertex-edge dominating set of $G$. We prove that for every tree $T$ of order $n \ge 3$ with $l$ leaves and $s$ support vertices we have $(n-l-s+3)/4...

    Full text available to download

  • Lower bound on the paired domination number of a tree

    W pracy przedstawione jest ograniczenie dolne dla liczby dominowania parami oraz scharakteryzowane są wszystkie drzewa ekstremalne.

    Full text available to download

  • Graphs with convex domination number close to their order

    Publication

    W pracy opisane są grafy z liczbą dominowania wypukłego bliską ilości ich wierzchołków.

  • On trees attaining an upper bound on the total domination number

    A total dominating set of a graph G is a set D of vertices of G such that every vertex of G has a neighbor in D. The total domination number of a graph G, denoted by γ_t(G), is the minimum cardinality of a total dominating set of G. Chellali and Haynes [Total and paired-domination numbers of a tree, AKCE International Journal of Graphs and Combinatorics 1 (2004), 69-75] established the following upper bound on the total domination...

    Full text to download in external service

  • An Alternative Proof of a Lower Bound on the 2-Domination Number of a Tree

    A 2-dominating set of a graph G is a set D of vertices of G such that every vertex not in D has a at least two neighbors in D. The 2-domination number of a graph G, denoted by gamma_2(G), is the minimum cardinality of a 2-dominating set of G. Fink and Jacobson [n-domination in graphs, Graph theory with applications to algorithms and computer science, Wiley, New York, 1985, 283-300] established the following lower bound on the 2-domination...

    Full text to download in external service

  • Block graphs with large paired domination multisubdivision number

    Publication

    - Discussiones Mathematicae Graph Theory - Year 2021

    The paired domination multisubdivision number of a nonempty graph G, denoted by msdpr(G), is the smallest positive integer k such that there exists an edge which must be subdivided k times to increase the paired domination number of G. It is known that msdpr(G) ≤ 4 for all graphs G. We characterize block graphs with msdpr(G) = 4.

    Full text available to download

  • Similarities and Differences Between the Vertex Cover Number and the Weakly Connected Domination Number of a Graph

    Publication
    • M. Lemańska
    • J. A. RODRíGUEZ-VELáZQUEZ
    • R. Trujillo-Rasua

    - FUNDAMENTA INFORMATICAE - Year 2017

    A vertex cover of a graph G = (V, E) is a set X ⊂ V such that each edge of G is incident to at least one vertex of X. The ve cardinality of a vertex cover of G. A dominating set D ⊆ V is a weakly connected dominating set of G if the subgraph G[D]w = (N[D], Ew) weakly induced by D, is connected, where Ew is the set of all edges having at least one vertex in D. The weakly connected domination number γw(G) of G is the minimum cardinality...

    Full text to download in external service

  • Lower bound on the weakly connected domination number of a tree

    Praca dotyczy dolnego ograniczenia liczby dominowania słabo spójnego w drzewach (ograniczenie ze względu na ilość wierzchołków i ilość wierzchołków końcowych w drzewie).

    Full text available to download

  • Nordhaus-Gaddum results for the convex domination number of a graph

    Publication

    - Periodica Mathematica Hungarica - Year 2012

    Praca dotyczy nierówności typu Nordhausa-Gadduma dla dominowania wypukłego.

    Full text to download in external service

  • Lower bound on the distance k-domination number of a tree

    W artykule przedstawiono dolne ograniczenie na liczbę k-dominowania w drzewach oraz scharakteryzowano wszystkie grafy ekstremalne.

    Full text to download in external service

  • An upper bound on the 2-outer-independent domination number of a tree

    Publication

    A 2-outer-independent dominating set of a graph G is a set D of vertices of G such that every vertex of V(G)D has a at least two neighbors in D, and the set V(G)D is independent. The 2-outer-independent domination number of a graph G, denoted by gamma_2^{oi}(G), is the minimum cardinality of a 2-outer-independent dominating set of G. We prove that for every nontrivial tree T of order n with l leaves we have gamma_2^{oi}(T) <= (n+l)/2,...

    Full text to download in external service

  • A lower bound on the total outer-independent domination number of a tree

    Publication

    A total outer-independent dominating set of a graph G is a set D of vertices of G such that every vertex of G has a neighbor in D, and the set V(G)D is independent. The total outer-independent domination number of a graph G, denoted by gamma_t^{oi}(G), is the minimum cardinality of a total outer-independent dominating set of G. We prove that for every nontrivial tree T of order n with l leaves we have gamma_t^{oi}(T) >= (2n-2l+2)/3,...

    Full text available to download

  • A lower bound on the double outer-independent domination number of a tree

    Publication

    A vertex of a graph is said to dominate itself and all of its neighbors. A double outer-independent dominating set of a graph G is a set D of vertices of G such that every vertex of G is dominated by at least two vertices of D, and the set V(G)D is independent. The double outer-independent domination number of a graph G, denoted by gamma_d^{oi}(G), is the minimum cardinality of a double outer-independent dominating set of G. We...

    Full text available to download

  • An upper bound on the total outer-independent domination number of a tree

    Publication

    A total outer-independent dominating set of a graph G=(V(G),E(G)) is a set D of vertices of G such that every vertex of G has a neighbor in D, and the set V(G)D is independent. The total outer-independent domination number of a graph G, denoted by gamma_t^{oi}(G), is the minimum cardinality of a total outer-independent dominating set of G. We prove that for every tree T of order n >= 4, with l leaves and s support vertices we have...

    Full text available to download

  • An upper bound for the double outer-independent domination number of a tree

    Publication

    A vertex of a graph is said to dominate itself and all of its neighbors. A double outer-independent dominating set of a graph G is a set D of vertices of G such that every vertex of G is dominated by at least two vertices of D, and the set V(G)\D is independent. The double outer-independent domination number of a graph G, denoted by γ_d^{oi}(G), is the minimum cardinality of a double outer-independent dominating set of G. We prove...

    Full text available to download

  • Nordhaus-Gaddum results for the weakly convex domination number of a graph

    Artykuł dotyczy ograniczenia z góry i z dołu (ze względu na ilość wierzchołków) sumy i iloczynu liczb dominowania wypukłego grafu i jego dopełnienia.

    Full text available to download

  • Some variants of perfect graphs related to the matching number, the vertex cover and the weakly connected domination number

    Publication

    Given two types of graph theoretical parameters ρ and σ, we say that a graph G is (σ, ρ)- perfect if σ(H) = ρ(H) for every non-trivial connected induced subgraph H of G. In this work we characterize (γw, τ )-perfect graphs, (γw, α′)-perfect graphs, and (α′, τ )-perfect graphs, where γw(G), τ (G) and α′(G) denote the weakly connected domination number, the vertex cover number and the matching number of G, respectively. Moreover,...

    Full text to download in external service

  • All graphs with paired-domination number two less than their order

    Publication

    Let G=(V,E) be a graph with no isolated vertices. A set S⊆V is a paired-dominating set of G if every vertex not in S is adjacent with some vertex in S and the subgraph induced by S contains a perfect matching. The paired-domination number γp(G) of G is defined to be the minimum cardinality of a paired-dominating set of G. Let G be a graph of order n. In [Paired-domination in graphs, Networks 32 (1998), 199-206] Haynes and Slater...

    Full text available to download

  • All graphs with restrained domination number three less than their order

    W pracy opisana jest rodzina wszystkich grafów, dla których liczbadominowania zewnętrznego jest o trzy mniejsza od ich rzędu.

    Full text available to download

  • INFLUENCE OF A VERTEX REMOVING ON THE CONNECTED DOMINATION NUMBER – APPLICATION TO AD-HOC WIRELESS NETWORKS

    Publication

    - Year 2015

    A minimum connected dominating set (MCDS) can be used as virtual backbone in ad-hoc wireless networks for efficient routing and broadcasting tasks. To find the MCDS is an NP- complete problem even in unit disk graphs. Many suboptimal algorithms are reported in the literature to find the MCDS using local information instead to use global network knowledge, achieving an important reduction in complexity. Since a wireless network...

    Full text to download in external service

  • Total domination in versus paired-domination in regular graphs

    A subset S of vertices of a graph G is a dominating set of G if every vertex not in S has a neighbor in S, while S is a total dominating set of G if every vertex has a neighbor in S. If S is a dominating set with the additional property that the subgraph induced by S contains a perfect matching, then S is a paired-dominating set. The domination number, denoted γ(G), is the minimum cardinality of a dominating set of G, while the...

    Full text available to download

  • Independent Domination Subdivision in Graphs

    Publication

    - GRAPHS AND COMBINATORICS - Year 2021

    A set $S$ of vertices in a graph $G$ is a dominating set if every vertex not in $S$ is adjacent to a vertex in~$S$. If, in addition, $S$ is an independent set, then $S$ is an independent dominating set. The independent domination number $i(G)$ of $G$ is the minimum cardinality of an independent dominating set in $G$. The independent domination subdivision number $\sdi(G)$ is the minimum number of edges that must be subdivided (each...

    Full text available to download

  • Jacek Tomków dr hab. inż.

    Education:1. 2018 - Ph.D. of Technical Sciencesin field of Materials Engineeringthesis: Influence of underwater welding conditions on cold cracking of high strength low alloy steel 2. 2012 - Master of Science Engineer, Gdansk University of Technologyin the field of: Mechanical Engineeringwith specialization in: Manufacturing Engineering and Computer Aided Manufacturing Processesthesis: Non-destructive testing of welding joints...

  • Critical graphs upon multiple edge subdivision

    Publication

    - Australasian Journal of Combinatorics - Year 2024

    A subset D of V (G) is a dominating set of a graph G if every vertex of V (G) − D has at least one neighbour in D; let the domination number γ(G) be the minimum cardinality among all dominating sets in G. We say that a graph G is γ-q-critical if subdividing any q edges results in a graph with domination number greater than γ(G) and there exists a set of q − 1 edges such that subdividing these edges results in a graph with domination...

    Full text available to download

  • Non-isolating 2-bondage in graphs

    A 2-dominating set of a graph G=(V,E) is a set D of vertices of G such that every vertex of V(G)D has at least two neighbors in D. The 2-domination number of a graph G, denoted by gamma_2(G), is the minimum cardinality of a 2-dominating set of G. The non-isolating 2-bondage number of G, denoted by b_2'(G), is the minimum cardinality among all sets of edges E' subseteq E such that delta(G-E') >= 1 and gamma_2(G-E') > gamma_2(G)....

    Full text available to download

  • Secure Italian domination in graphs

    Publication

    - JOURNAL OF COMBINATORIAL OPTIMIZATION - Year 2021

    An Italian dominating function (IDF) on a graph G is a function f:V(G)→{0,1,2} such that for every vertex v with f(v)=0, the total weight of f assigned to the neighbours of v is at least two, i.e., ∑u∈NG(v)f(u)≥2. For any function f:V(G)→{0,1,2} and any pair of adjacent vertices with f(v)=0 and u with f(u)>0, the function fu→v is defined by fu→v(v)=1, fu→v(u)=f(u)−1 and fu→v(x)=f(x) whenever x∈V(G)∖{u,v}. A secure Italian dominating...

    Full text available to download

  • Some variations of perfect graphs

    Publication

    - Discussiones Mathematicae Graph Theory - Year 2016

    We consider (ψk−γk−1)-perfect graphs, i.e., graphs G for which ψk(H) =γk−1(H) for any induced subgraph H of G, where ψk and γk−1 are the k -path vertex cover number and the distance (k−1)-domination number, respectively. We study (ψk−γk−1)-perfect paths, cycles and complete graphs for k≥2. Moreover, we provide a complete characterisation of (ψ2−γ1)-perfect graphs describing the set of its forbidden induced subgraphs and providing...

    Full text available to download

  • Two Approaches to Constructing Certified Dominating Sets in Social Networks

    Publication

    - IEEE Access - Year 2025

    Social networks are an important part of our community. In this context, certified dominating sets help to find in networks a group of people, referring as officials, such that 1) for each civilian, there is an official that can serve the civilian, and 2) no official is adjacent to exactly one civilian, to prevent potential abuses. To delve deeper into this topic, this study considers two approaches to the problem of finding certified...

    Full text to download in external service

  • On trees with equal 2-domination and 2-outer-independent domination numbers

    For a graph G = (V,E), a subset D \subseteq V(G) is a 2-dominating set if every vertex of V(G)\D$ has at least two neighbors in D, while it is a 2-outer-independent dominating set if additionally the set V(G)\D is independent. The 2-domination (2-outer-independent domination, respectively) number of G, is the minimum cardinality of a 2-dominating (2-outer-independent dominating, respectively) set of G. We characterize all trees...

    Full text available to download

  • 2-outer-independent domination in graphs

    Publication

    We initiate the study of 2-outer-independent domination in graphs. A 2-outer-independent dominating set of a graph G is a set D of vertices of G such that every vertex of V(G)\D has at least two neighbors in D, and the set V(G)\D is independent. The 2-outer-independent domination number of a graph G is the minimum cardinality of a 2-outer-independent dominating set of G. We show that if a graph has minimum degree at least two,...

    Full text available to download

  • On the ratio between 2-domination and total outer-independent domination numbers of trees

    A 2-dominating set of a graph G is a set D of vertices of G such that every vertex of V(G)D has a at least two neighbors in D. A total outer-independent dominating set of a graph G is a set D of vertices of G such that every vertex of G has a neighbor in D, and the set V(G)D is independent. The 2-domination (total outer-independent domination, respectively) number of a graph G is the minimum cardinality of a 2-dominating (total...

    Full text to download in external service

  • Elżbieta Cecerska-Heryć dr n.med.

    People

    Wykształcenie i stopnie naukowe: 19.06.2018 r.ukończenie studiów doktoranckich z wyróżnieniem summa cum  laudena Wydziale Lekarskim z OdziałemNauczania w Języku Angielskim PUM SzczecinStopień naukowy: doktor nauk medycznychWyższe2008-2013                               Pomorski Uniwersytet Medyczny w Szczecinie            Kierunek: Biotechnologia            Specjalność: Biotechnologia MedycznaStudia licencjackie i magisterskieZatrudnienie...

  • Robert Jankowski prof. dr hab. inż.

    He was born on December 26, 1968 in Gdynia. A graduate of the High School at the Consulate of Poland in Benghazi, Libya (1987), a student at the Gdańsk University of Technology (MSc studies, 1987-1991 and 1992-1993), University of Sheffield, England (BSc studies, 1991-1992), University of Roskilde, Denmark (MSc course, 1993) and University of Tokyo, Japan (PhD studies, 1994-1997). From the beginning of his professional career associated...