Search results for: INTERATOMIC POTENTIALS, MOLECULAR DYNAMICS
-
Interatomic potential suitable for the modeling of penta-graphene: Molecular statics/molecular dynamics studies
PublicationWe test the potentials available for elemental carbon, with the scope to choose the potential suitable for the modeling of penta-graphene, the latest two dimensional carbon allotrope. By using molecular statics and molecular dynamics simulations we show that there is only one potential e namely the Tersoff-type potential proposed by Erhart and Albe in 2005 e which is able to correctly describe all the important features of penta-graphene....
-
Towards temperature-dependent coarse-grained potentials of side-chain interactions for protein folding simulations. I: Molecular dynamics study of a pair of methane molecules in water at various temperatures
Publication -
Molecular dynamics studies of polyurethane nanocomposite hydrogels
PublicationPolyurethane PEO-based hydrogels have a broad range of biomedical applicability. They are attractive for drug-controlled delivery systems, surgical implants and wound healing dressings. In this study, a PEO based polyurethane hydrogels containing Cloisite R 30B, an organically modified clay mineral, was synthesized. Structure of nanocomposite hydrogels was determined using XRD technique. Its molecular dynamics was studied by means...
-
Anion–water interactions of weakly hydrated anions: molecular dynamics simulations of aqueous NaBF4 and NaPF6
PublicationIn aqueous ionic solutions, both the structure and the dynamics of water are altered dramatically with respect to the pure solvent. The emergence of novel experimental techniques makes these changes accessible to detailed investigations. At the same time, computational studies deliver unique possibilities for the interpretation of the experimental data at the molecular level. Here, using molecular dynamics simulations, we demonstrate...
-
Molecular Dynamics simulations of thermal conductivity of penta-graphene
PublicationThe thermal conductivity of penta-graphene (PG), a new two dimensional carbon allotrope and its dependence on temperature, strain, and direction are studied in this paper. The thermal conductivity of PG is investigated using a non-equilibrium molecular dynamics simulation (NEMD) with the Two Region Method by applying the optimized Tersoff interatomic potential. Our study shows that the thermal conductivity of PG (determined for...
-
Changes of Conformation in Albumin with Temperature by Molecular Dynamics Simulations
PublicationThis work presents the analysis of the conformation of albumin in the temperature range of 300K – 312K, i.e., in the physiological range. Using molecular dynamics simulations, we calculate values of the backbone and dihedral angles for this molecule. We analyze the global dynamic properties of albumin treated as a chain. In this range of temperature, we study parameters of the molecule and the conformational entropy derived from...
-
Molecular dynamics simulations of the growth of poly (chloro-para-xylylene) films.
PublicationParylene C, poly(chloro-para-xylylene) is the most widely used member of the parylene family due to its excellent chemical and physical properties. In this work we analyzed the formation of the parylene C film using molecular mechanics and molecular dynamics methods. A five unit chain is necessary to create a stable hydrophobic cluster and to adhere to a covered surface. Two scenarios were deemed to take place. The obtained results...
-
Molecular dynamics and verisimilitude - to what extent can one trust a computational simulation?
PublicationFor the last several tens of years, computer simulations have become of undeniable importance. Molecular Dynamics (MD) simulation techniques are used to examine the phenomena which occur at the level that cannot be observed directly. Thus, they can be successfully exploited in many different scientific fields such as: materials science, applied mathematics and theoretical physics, biochemistry, biophysics or drug design. Despite...
-
Albumin–Hyaluronan Interactions: Influence of Ionic Composition Probed by Molecular Dynamics
PublicationThe lubrication mechanism in synovial fluid and joints is not yet fully understood. Nevertheless, intermolecular interactions between various neutral and ionic species including large macromolecular systems and simple inorganic ions are the key to understanding the excellent lubrication performance. An important tool for characterizing the intermolecular forces and their structural consequences is molecular dynamics. Albumin...
-
Mechanical Properties of Twisted Carbon Nanotube Bundles with Carbon Linkers from Molecular Dynamics Simulations
PublicationThe manufacturing of high-modulus, high-strength fibers is of paramount importance for real-world, high-end applications. In this respect, carbon nanotubes represent the ideal candidates for realizing such fibers. However, their remarkable mechanical performance is difficult to bring up to the macroscale, due to the low load transfer within the fiber. A strategy to increase such load transfer is the introduction of chemical linkers...
-
Structure of liquid gold from tight-binding driven molecular-dynamics
PublicationPraca przedstawia wyniki symulacji ciekłego złota w nadkomórce periodycznej przy użyciu stworzonego przez autorów programu komputerowego, za pomocą połączonych metod dynamiki molekularnej (MD) i ciasnego wiązania (TB). Omówiono strukturę tak symulowanej cieczy, porównując ją z dostępnymi danymi doświadczalnymi oraz wynikami innych symulacji, pod kątem radialnej i kątowej funkcji rozkładu i elektronowej gęstości stanów.A tight-binding...
-
Hydration of amino acids: FTIR spectra and molecular dynamics studies
PublicationThe hydration of selected amino acids, alanine, glycine, proline, valine, isoleucine and phenylalanine, has been studied in aqueous solutions by means of FTIR spectra of HDO isotopically diluted in H2O. The difference spectra procedure and the chemometric method have been applied to remove the contribution of bulk water and thus to separate the spectra of solute-affected HDO. To support interpretation of obtained spectral results,...
-
Performance of extended Lagrangian schemes for molecular dynamics simulations with classical polarizable force fields and density functional theory
PublicationIterative energy minimization with the aim of achieving self-consistency is a common feature of Born-Oppenheimer molecular dynamics (BOMD) and classical molecular dynamics with polarizable force fields. In the former, the electronic degrees of freedom are optimized, while the latter often involves an iterative determination of induced point dipoles. The computational effort of the self-consistency procedure can be reduced by re-using...
-
Solvent Exchange around Aqueous Zn(II) from Ab Initio Molecular Dynamics Simulations
PublicationHydrated zinc(II) cations, due to their importance in biological systems, are the subject of ongoing research concerning their hydration shell structure and dynamics. Here, ab initio molecular dynamics (AIMD) simulations are used to study solvent exchange events around aqueous Zn2+, for which observation in detail is possible owing to the considerable length of the generated trajectory. While the hexacoordinated Zn(H2O)62+ is the...
-
Explicit solvent repulsive scaling replica exchange molecular dynamics ( RS‐REMD ) in molecular modeling of protein‐glycosaminoglycan complexes
PublicationGlycosaminoglcyans (GAGs), linear anionic periodic polysaccharides, are crucial for many biologically relevant functions in the extracellular matrix. By interacting with proteins GAGs mediate processes such as cancer development, cell proliferation and the onset of neurodegenerative diseases. Despite this eminent importance of GAGs, they still represent a limited focus for the computational community in comparison to other classes...
-
Effect of Nanohydroxyapatite on Silk Fibroin–Chitosan Interactions—Molecular Dynamics Study
PublicationFibroin–chitosan composites, especially those containing nanohydroxyapatite, show potential for bone tissue regeneration. The physicochemical properties of these biocomposites depend on the compatibility between their components. In this study, the intermolecular interactions of fibroin and chitosan were analyzed using a molecular dynamics approach. Two types of systems were investigated: one containing acetic acid and the other...
-
Molecular Dynamics Studies on Amyloidogenic Proteins
Publication -
Molecular Dynamics Studies on Amyloidogenic Proteins
Publication -
Free volume in physical absorption of carbon dioxide in ionic liquids: Molecular dynamics supported modeling
PublicationUnderstanding the mechanisms underlying the carbon dioxide (CO2) absorption in ionic liquids (ILs) is the key to their efficient utilization in industrial flue gas treatment. One of the parameters considered substantially important in the process is the Free Volume. In this study, the Fractional Free Volume (FFV) of 73 ILs was calculated using Molecular Dynamics (MD). A quantitative Structure-Property Relationship (QSPR) study...
-
Structure of the interlayer between Au thin film and Si-substrate: Molecular Dynamics simulations
PublicationInteraction between 2, 3, 5 and 7 atomic layers of gold and a (111) silicon surface was investigated with the molecular dynamics simulation method. The simulation of the diffusion interaction between gold and silicon in the temperature range 425-925 K has been carried out. The peculiarities of the concentration changes of the interacting components and the atomic density at the boundary...
-
Applying molecular dynamics simulation to take the fracture fingerprint of polycrystalline SiC nanosheets
PublicationGraphene-like nanosheets are the key elements of advanced materials and systems. The mechanical behavior of the structurally perfect 2D nanostructures is well documented, but that of polycrystalline ones is less understood. Herein, we applied molecular dynamics simulation (MDS) to take the fracture fingerprint of polycrystalline SiC nanosheets (PSiCNS), where monocrystalline SiC nanosheets (MSiCNS) was the reference nanosheet....
-
Structural and dynamic insights on the EmrE protein with TPP+ and related substrates through molecular dynamics simulations
PublicationEmrE is a bacterial transporter protein that forms an anti-parallel homodimer with four transmembrane helices in each monomer. EmrE transports positively charged aromatic compounds, such as TPP+ and its derivatives. We performed molecular dynamics (MD) simulations of EmrE in complex with TPP+, MeTPP+, and MBTPP+ embedded in a membrane. The detailed molecular properties and interactions were analysed for all EmrE-ligand complexes....
-
Formation of Protein Networks between Mucins: Molecular Dynamics Study Based on the Interaction Energy of the System
PublicationMolecular dynamics simulations have been performed for a model aqueous solution of mucin. As mucin is a central part of lubricin, a key component of synovial fluid, we investigate its ability to form cross-linked networks. Such network formation could be of major importance for the viscoelastic properties of the soft-matter system and crucial for understanding the lubrication mechanism in articular cartilage. Thus,the inter- and...
-
Structural and dynamic changes adopted by EmrE, multidrug transporter protein—Studies by molecular dynamics simulation
PublicationEmrE protein transports positively charged aromatic drugs (xenobiotics) in exchange for two protons and thus provides bacteria resistance to variety of drugs. In order to understand how this protein may recognize ligands, the monomer and asymmetric apo-form of the EmrE dimer embedded in a heterogeneous phospholipid (POPE + POPG) membrane were studied by molecular dynamics simulations. Dimer is regarded as a functional form of the...
-
Molecular dynamics simulations of the affinity of chitin and chitosan for collagen: the effect of pH and the presence of sodium and calcium cations
PublicationChitosan and chitin are promising biopolymers used in many areas including biomedical applications, such as tissue engineering and viscosupplementation. Chitosan shares similar properties with hyaluronan, a natural component of synovial fluid, making it a good candidate for joint disease treatment. The structural and energetic consequences of intermolecular interactions are crucial for understanding the biolubrication phenomenon...
-
Collagen type II–hyaluronan interactions – the effect of proline hydroxylation: a molecular dynamics study
PublicationHyaluronan–collagen composites have been employed in numerous biomedical applications. Understanding the interactions between hyaluronan and collagen is particularly important in the context of joint cartilage function and the treatment of joint diseases. Many factors affect the affinity of collagen for hyaluronan. One of the important factors is the ratio of 3- or 4-hydroxy proline to proline residues. This article presents...
-
Catalytic Mechanism of Non-Target DNA Cleavage in CRISPR-Cas9 Revealed by Ab Initio Molecular Dynamics
PublicationCRISPR-Cas9 is a cutting-edge genome editing technology, which uses the endonuclease Cas9 to introduce mutations at desired sites of the genome. This revolutionary tool is promising to treat a myriad of human genetic diseases. Nevertheless, the molecular basis of DNA cleavage, which is a fundamental step for genome editing, has not been established. Here, quantum–classical molecular dynamics (MD) and free energy methods are used...
-
Molecular dynamics simulation of polymerization of p-xylylene
Publication -
Effect of Chitosan Deacetylation on Its Affinity to Type III Collagen: A Molecular Dynamics Study
PublicationThe ability to form strong intermolecular interactions by linear glucosamine polysaccharides with collagen is strictly related to their nonlinear dynamic behavior and hence bio-lubricating features. Type III collagen plays a crucial role in tissue regeneration, and its presence in the articular cartilage affects its bio-technical features. In this study, the molecular dynamics methodology was applied to evaluate the effect of...
-
Identification of 1H‐indene‐(1, 3, 5, 6)‐tetrol derivatives as potent pancreatic lipase inhibitors using molecular docking and molecular dynamics approach
PublicationPancreatic lipase is a potential therapeutic target to treat diet-induced obesity in humans, as obesity-related diseases continue to be a global problem. Despite intensive research on finding potential inhibitors, very few compounds have been introduced to clinical studies. In this work, new chemical scaffold 1H-indene-(1,3,5,6)-tetrol was proposed using knowledge-based approach, and 36 inhibitors were derived by modifying its...
-
Molecular Dynamics to Predict Cryo-EM: Capturing Transitions and Short-Lived Conformational States of Biomolecules
PublicationSingle-particle cryogenic electron microscopy (cryo-EM) has revolutionized the field of the structural biology, providing an access to the atomic resolution structures of large biomolecular complexes in their near-native environment. Today’s cryo-EM maps can frequently reach the atomic-level resolution, while often containing a range of resolutions, with conformationally variable regions obtained at 6 Å or worse. Low resolution...
-
Silica In Silico: A Molecular Dynamics Characterization of the Early Stages of Protein Embedding for Atom Probe Tomography
PublicationA novel procedure for the application of atom probe tomography (APT) to the structural analysis of biological systems, has been recently proposed, whereby the specimen is embedded by a silica matrix and ablated by a pulsed laser source. Such a technique, requires that the silica primer be properly inert and bio-compatible, keeping the native structural features of the system at hand, while condensing into an amorphous, glass-like...
-
Long range molecular dynamics study of regulation of eukaryotic glucosamine-6-phosphate synthase activity by UDP-GlcNAc
PublicationGlucosamine-6-phosphate (GlcN-6-P) synthase catalyses the first and practically irreversible step in hexosamine metabolism. The final product of this pathway, uridine 5' diphospho N-acetyl-D-glucosamine (UDPGlcNAc), is an essential substrate for assembly of bacterialand fungal cell walls. Moreover, the enzyme is involved in phenomenon of hexosamine induced insulin resistance in type II diabetes, which makes it a potential target...
-
Mechanism of recognition of parallel G-quadruplexes by DEAH/RHAU helicase DHX36 explored by molecular dynamics simulations
PublicationBecause of high stability and slow unfolding rates of G-quadruplexes (G4), cells have evolved specialized helicases that disrupt these non-canonical DNA and RNA structures in an ATP-dependent manner. One example is DHX36, a DEAH-box helicase, which participates in gene expression and replication by recognizing and unwinding parallel G4s. Here, we studied the molecular basis for the high affinity and specificity of DHX36 for parallel-type...
-
Anisotropic mechanical behavior and auxeticity of penta-graphene: Molecular statics/molecular dynamics studies
PublicationWe investigate the mechanical properties of penta-graphene (PG), a recently proposed two-dimensional carbon allotrope using atomistic simulation techniques combined with the empirical description of interatomic interactions. We report on the dependence of its three in-plane mechanical moduli (i.e. Young's modulus, Poisson's ratio and shear modulus) on the deformation direction, strain and temperature. We show that PG displays a...
-
Molecular aspects of the interaction between amphotericin B and a phospholipid bilayer: molecular dynamics studies.
PublicationAmfoterycyna B jest antybiotykiem z grupy polienów makrolidowych. Stosowany jest on w leczeniu układowych infekcji grzybowych. Wiadomo że związek ten oddziałuje ze składnikami błon lipidowych i tworzy kanały. W przedstawianej pracy prezentowane są wyniki symulacji przeprowadzonej dynamiką molekularną układu składającego się z 200 cząsteczek lipidów DMPC i jednej cząsteczki amfoterycyny ułożonej na powierzchni błony. Z przeprowadzonej...
-
Collagen Type II—Chitosan Interactions as Dependent on Hydroxylation and Acetylation Inferred from Molecular Dynamics Simulations
PublicationChitosan–collagen blends have been widely applied in tissue engineering, joints diseases treatment, and many other biomedical fields. Understanding the affinity between chitosan and collagen type II is particularly relevant in the context of mechanical properties modulation, which is closely associated with designing biomaterials suitable for cartilage and synovial fluid regeneration. However, many structural features influence...
-
Encapsulation of an anticancer drug Isatin inside a host nano-vehicle SWCNT: a molecular dynamics simulation
PublicationThe use of carbon nanotubes as anticancer drug delivery cargo systems is a promising modality as they are able to perforate cellular membranes and transport the carried therapeutic molecules into the cellular components. Our work describes the encapsulation process of a common anticancer drug, Isatin (1H-indole-2,3-dione) as a guest molecule, in a capped single-walled carbon nanotube (SWCNT) host with chirality of (10,10). The...
-
Molecular dynamics simulations of ultraprecision machining of fcc monocrystals
PublicationArtykuł zawiera wyniki wielkoskalowych symulacji dynamiczno-molekularnych ultraprecyzyjnego skrawania monokryształów metali niedeformowalnym narzędziem. Zmiennymi parametrami symulacji były: szybkość i głębokość skrawania, temperatura, orientacja krystalograficzna skrawanego kryształu oraz kształt narzędzia.Analizie poddano zmiany strukturalne w obrabianym materiale.
-
Molecular dynamics of fentanyl bound to μ-opioid receptor
Publication -
Molecular dynamics study on the influence of C-terminal sugar substitution on dynamics and conformation of vancomycin derivatives
Publication -
Comparative molecular dynamics study of dimeric and monomeric forms of HIV-1 protease in ligand bound and unbound state
PublicationHuman immunodeficiency virus type 1 protease (HIV-1 PR) is a viral-encoded enzyme that forms a homodimer. HIV-1 PR is essential for replication and assembly of the virus and inactivation of HIV-1 PR enzyme causes production of immature, noninfectious viral particles and thus HIV-1 PR is an attractive target in anti-AIDS drug design. In our current work, we performed molecular dynamics (MD) calculations (500 ns) for two different...
-
Molecular dynamics simulations reveal the balance of forces governing the formation of a guanine tetrad—a common structural unit of G-quadruplex DNA
PublicationG-quadruplexes (G4) are nucleic acid conformations of guanine-rich sequences, in which guanines are arranged in the square-planar G-tetrads, stacked on one another. G4 motifs form in vivo and are implicated in regulation of such processes as gene expression and chromosome maintenance. The structure and stability of various G4 topologies were determined experimentally; however, the driving forces for their formation are not fully...
-
Molecular-dynamics simulation of clustering processes in sea-ice floes
Publication -
Molecular Dynamics of a Vasopressin V2 Receptor in a Phospholipid Bilayer Membrane
Publication -
Molecular dynamics-based model of VEGF-A and its heparin interactions
Publication -
The structure of rarefied and densified PbSiO3 glass: a molecular dynamics study.
PublicationArtykuł przedstawia wyniki symulacji dynamiczno-molekularnychstruktury rozrzedzonego i zagęszczonego szkła PbSiO3 (w zakresie gęstości od 3000 kg/m3 do 8000 kg/m3). Otrzymane wyniki dokładnie przedyskutowano pod kątem blisko- i średnio-zasięgowego uporządkowania atomów i porównano ze strukturą szkła PbSiO3 o normalnej gęstości (5970kg/m3) oraz ze strukturą rozrzedzonych i zagęszczonych szkieł PbGeO3.
-
Cation diffusion coefficients in CuAgI via molecular dynamics simulations
PublicationPraca prezentuje wyniki analizy strukturalnej otrzymane poprzez symulacje dynamiczno-molekularne (zespół NpT, dwuciałowy potencjał Vashisty-Rahmana) superjonowego związku o składzie (1-x)Cu-xAg-I, x = 0.0, 0.25, 0.5, 0.75, 1.0). Wyznaczono wartość współczynnika dyfuzji kationów i energii aktywacji w funkcji składu szkła i temperatury. Otrzymane rezultaty porównano z danymi literaturowymi.
-
Effect of heat treatment on the diffusion intermixing and structure of the Cu thin film on Si (111) substrate: a molecular dynamics simulation study
PublicationThis work is devoted to the study of the diffusion process at the interface between copper films with a thickness of 2, 3, 4, 7 and 10 atomic monolayers and silicon substrate by molecular dynamics simulation method. For this purpose, the variation of the concentration of copper and silicon along the perpendicular direction to the interface was investigated. An analysis of the density profile along this direction made it possible...
-
Long range molecular dynamics study of interactions of the eukaryotic glucosamine-6-phosphate synthase with fructose-6-phosphate and UDP-GlcNAc
PublicationGlucosamine-6-phosphate synthase (EC 2.6.1.16) is responsible for catalysis of the first and practically irreversible step in hexosamine metabolism. The final product of this pathway, uridine 5 diphospho Nacetyl- d-glucosamine (UDP-GlcNAc), is an essential substrate for assembly of bacterial and fungal cell walls. Moreover, the enzyme is involved in phenomenon of hexosamine induced insulin resistance in type II diabetes, which...