Filters
total: 2169
-
Catalog
- Publications 1459 available results
- Journals 468 available results
- Conferences 27 available results
- Publishing Houses 2 available results
- People 82 available results
- Projects 9 available results
- e-Learning Courses 81 available results
- Events 9 available results
- Open Research Data 32 available results
displaying 1000 best results Help
Search results for: offline policy learning
-
CONTINUUM Lifelong Learning in Neurology
Journals -
Journal of Formative Design in Learning
Journals -
Scholarship of Teaching and Learning in Psychology
Journals -
JOURNAL OF MACHINE LEARNING RESEARCH
Journals -
Journal of Applied Learning and Teaching
Journals -
Critical Studies in Teaching and Learning
Journals -
Higher Learning Research Communications
Journals -
Canadian Journal of Learning and Technology
Journals -
E-Learning and Digital Media
Journals -
Machine Learning and Knowledge Extraction
Journals -
Machine Learning-Science and Technology
Journals -
JOURNAL OF COMPUTER ASSISTED LEARNING
Journals -
Solvent Screening for Solubility Enhancement of Theophylline in Neat, Binary and Ternary NADES Solvents: New Measurements and Ensemble Machine Learning
PublicationTheophylline, a typical representative of active pharmaceutical ingredients, was selected to study the characteristics of experimental and theoretical solubility measured at 25 °C in a broad range of solvents, including neat, binary mixtures and ternary natural deep eutectics (NADES) prepared with choline chloride, polyols and water. There was a strong synergistic effect of organic solvents mixed with water, and among the experimentally...
-
Application of a hybrid mechanistic/machine learning model for prediction of nitrous oxide (N2O) production in a nitrifying sequencing batch reactor
PublicationNitrous oxide (N2O) is a key parameter for evaluating the greenhouse gas emissions from wastewater treatment plants. In this study, a new method for predicting liquid N2O production during nitrification was developed based on a mechanistic model and machine learning (ML) algorithm. The mechanistic model was first used for simulation of two 15-day experimental trials in a nitrifying sequencing batch reactor. Then, model predictions...
-
Scenarios as a tool supporting decisions in urban energy policy: The analysis using fuzzy logic, multi-criteria analysis and GIS tools
Publication -
State tax policy and reform tools as a risk of running a business. Case study based on Polski Ład – Polish tax reform
PublicationThe aim of the article is to describe and present the Polish tax reform introduced at the beginning of 2022. Tax changes introduced in Poland had a strong impact on the risk of running a business in Poland because in their assumption they directly changed the rules of running a business. Due to the pace of the introduced changes, as well as the scope of the reform, the new tax law was subject to numerous criticisms of taxpayers...
-
Tuning Ferulic Acid Solubility in Choline-Chloride- and Betaine-Based Deep Eutectic Solvents: Experimental Determination and Machine Learning Modeling
PublicationDeep eutectic solvents (DES) represent a promising class of green solvents, offering particular utility in the extraction and development of new formulations of natural compounds such as ferulic acid (FA). The experimental phase of the study undertook a systematic investigation of the solubility of FA in DES, comprising choline chloride or betaine as hydrogen bond acceptors and six different polyols as hydrogen bond donors....
-
Policy Press
Publishing Houses -
Machine learning-based prediction of seismic limit-state capacity of steel moment-resisting frames considering soil-structure interaction
PublicationRegarding the unpredictable and complex nature of seismic excitations, there is a need for vulnerability assessment of newly constructed or existing structures. Predicting the seismic limit-state capacity of steel Moment-Resisting Frames (MRFs) can help designers to have a preliminary estimation and improve their views about the seismic performance of the designed structure. This study improved data-driven decision techniques in...
-
Robust-adaptive dynamic programming-based time-delay control of autonomous ships under stochastic disturbances using an actor-critic learning algorithm
PublicationThis paper proposes a hybrid robust-adaptive learning-based control scheme based on Approximate Dynamic Programming (ADP) for the tracking control of autonomous ship maneuvering. We adopt a Time-Delay Control (TDC) approach, which is known as a simple, practical, model free and roughly robust strategy, combined with an Actor-Critic Approximate Dynamic Programming (ACADP) algorithm as an adaptive part in the proposed hybrid control...
-
Low-Cost and Highly-Accurate Behavioral Modeling of Antenna Structures by Means of Knowledge-Based Domain-Constrained Deep Learning Surrogates
PublicationThe awareness and practical benefits of behavioral modeling methods have been steadily growing in the antenna engineering community over the last decade or so. Undoubtedly, the most important advantage thereof is a possibility of a dramatic reduction of computational expenses associated with computer-aided design procedures, especially those relying on full-wave electromagnetic (EM) simulations. In particular, the employment of...
-
Solubility Characteristics of Acetaminophen and Phenacetin in Binary Mixtures of Aqueous Organic Solvents: Experimental and Deep Machine Learning Screening of Green Dissolution Media
PublicationThe solubility of active pharmaceutical ingredients is a mandatory physicochemical characteristic in pharmaceutical practice. However, the number of potential solvents and their mixtures prevents direct measurements of all possible combinations for finding environmentally friendly, operational and cost-effective solubilizers. That is why support from theoretical screening seems to be valuable. Here, a collection of acetaminophen...
-
Machine learning-based prediction of residual drift and seismic risk assessment of steel moment-resisting frames considering soil-structure interaction
PublicationNowadays, due to improvements in seismic codes and computational devices, retrofitting buildings is an important topic, in which, permanent deformation of buildings, known as Residual Interstory Drift Ratio (RIDR), plays a crucial role. To provide an accurate yet reliable prediction model, 32 improved Machine Learning (ML) algorithms were considered using the Python software to investigate the best method for estimating Maximum...
-
Deep Learning-Based, Multiclass Approach to Cancer Classification on Liquid Biopsy Data
Publication -
BIG DATA SIGNIFICANCE IN REMOTE MEDICAL DIAGNOSTICS BASED ON DEEP LEARNING TECHNIQUES
PublicationIn this paper we discuss the evaluation of neural networks in accordance with medical image classification and analysis. We also summarize the existing databases with images which could be used for training deep models that can be later utilized in remote home-based health care systems. In particular, we propose methods for remote video-based estimation of patient vital signs and other health-related parameters. Additionally, potential...
-
Machine Learning and data mining tools applied for databases of low number of records
Publication -
DALSA: Domain Adaptation for Supervised Learning From Sparsely Annotated MR Images
Publication -
Improved estimation of dynamic modulus for hot mix asphalt using deep learning
Publication -
Machine learning techniques combined with dose profiles indicate radiation response biomarkers
Publication -
Simulation Method for Scheduling Linear Construction Projects Using the Learning– Forgetting Effect
Publication -
Learning Feedforward Control Using Multiagent Control Approach for Motion Control Systems
Publication -
Learning from Imbalanced Data Streams Based on Over-Sampling and Instance Selection
Publication -
Effects of mutual learning in physical education to improve health indicators of Ukrainian students
Publication -
Nondestructive Chicken Egg Fertility Detection Using CNN-Transfer Learning Algorithms
Publication -
Overcoming “Big Data” Barriers in Machine Learning Techniques for the Real-Life Applications
Publication -
Development and Optimization of Deep Learning Systems for MRI Analysis in Alzheimer's Disease Monitoring
Publication -
Multivariate Features Extraction and Effective Decision Making Using Machine Learning Approaches
Publication -
Analyzing the Effectiveness of the Brain–Computer Interface for Task Discerning Based on Machine Learning
PublicationThe aim of the study is to compare electroencephalographic (EEG) signal feature extraction methods in the context of the effectiveness of the classification of brain activities. For classification, electroencephalographic signals were obtained using an EEG device from 17 subjects in three mental states (relaxation, excitation, and solving logical task). Blind source separation employing independent component analysis (ICA) was...
-
Influence of Thermal Imagery Resolution on Accuracy of Deep Learning based Face Recognition
PublicationHuman-system interactions frequently require a retrieval of the key context information about the user and the environment. Image processing techniques have been widely applied in this area, providing details about recognized objects, people and actions. Considering remote diagnostics solutions, e.g. non-contact vital signs estimation and smart home monitoring systems that utilize person’s identity, security is a very important factor....
-
Autonomous Perception and Grasp Generation Based on Multiple 3D Sensors and Deep Learning
PublicationGrasping objects and manipulating them is the main way the robot interacts with its environment. However, for robots to operate in a dynamic environment, a system for determining the gripping position for objects in the scene is also required. For this purpose, neural networks segmenting the point cloud are usually applied. However, training such networks is very complex and their results are unsatisfactory. Therefore, we propose...
-
Comparison of Deep Neural Network Learning Algorithms for Mars Terrain Image Segmentation
PublicationThis paper is dedicated to the topic of terrain recognition on Mars using advanced techniques based on the convolutional neural networks (CNN). The work on the project was conducted based on the set of 18K images collected by the Curiosity, Opportunity and Spirit rovers. The data were later processed by the model operating in a Python environment, utilizing Keras and Tensorflow repositories. The model benefits from the pretrained...
-
Driver’s Condition Detection System Using Multimodal Imaging and Machine Learning Algorithms
PublicationTo this day, driver fatigue remains one of the most significant causes of road accidents. In this paper, a novel way of detecting and monitoring a driver’s physical state has been proposed. The goal of the system was to make use of multimodal imaging from RGB and thermal cameras working simultaneously to monitor the driver’s current condition. A custom dataset was created consisting of thermal and RGB video samples. Acquired data...
-
Is Antimicrobial Stewardship Policy Effectively Implemented in Polish Hospitals? Results from Antibiotic Consumption Surveillance before and during the COVID-19 Pandemic
Publication -
Andrzej Klimczuk Economic Foundations for Creative Ageing Policy, Volume 1: Context and Considerations Palgrave Macmillan, 2015. 208 p. $115.00.
Publication -
Modeling the economic dependence between town development policy and increasing energy effectiveness with neural networks. Case study: The town of Zielona Góra
Publication -
Are We Facing a Tsunami of Vaccine Hesitancy or Outdated Pandemic Policy in Times of Omicron? Analyzing Changes of COVID-19 Vaccination Trends in Poland
Publication -
Tomasz Janowski dr
PeopleTomasz Janowski is the Head of the Department of Informatics in Management, Gdańsk University of Technology, Poland; Invited Professor at the Department for E-Governance and Administration, University for Continuing Education Krems, Austria; and Co-Editor-in-Chief of Government Information Quarterly, Elsevier. Previously, he was the founder and head of the United Nations University Operating Unit on Policy-Driven Electronic Governance...
-
Integrating Statistical and Machine‐Learning Approach for Meta‐Analysis of Bisphenol A‐Exposure Datasets Reveals Effects on Mouse Gene Expression within Pathways of Apoptosis and Cell Survival
PublicationBisphenols are important environmental pollutants that are extensively studied due to different detrimental effects, while the molecular mechanisms behind these effects are less well understood. Like other environmental pollutants, bisphenols are being tested in various experimental models, creating large expression datasets found in open access storage. The meta‐analysis of such datasets is, however, very complicated for various...
-
Lead-free bismuth-based perovskites coupled with g–C3N4: A machine learning based novel approach for visible light induced degradation of pollutants
PublicationThe use of metal halide perovskites in photocatalytic processes has been attempted because of their unique optical properties. In this work, for the first time, Pb-free Bi-based perovskites of the Cs3Bi2X9 type (X = Cl, Br, I, Cl/Br, Cl/I, Br/I) were synthesized and subjected to comprehensive morphological, structural, and surface analyses, and photocatalytic properties in the phenol degradation reaction were examined. Furthermore,...
-
Expedited Machine-Learning-Based Global Design Optimization of Antenna Systems Using Response Features and Multi-Fidelity EM Analysis
PublicationThe design of antenna systems poses a significant challenge due to stringent per-formance requirements dictated by contemporary applications and the high com-putational costs associated with models, particularly full-wave electromagnetic (EM) analysis. Presently, EM simulation plays a crucial role in all design phases, encompassing topology development, parametric studies, and the final adjustment of antenna dimensions. The latter...