Search results for: ANTENNA EFFICIENCY
-
A design framework for rigorous constrained EM-driven optimization of miniaturized antennas with circular polarization
PublicationCompact radiators with circular polarization are important components of modern mobile communication systems. Their design is a challenging process which requires maintaining simultaneous control over several performance figures but also the structure size. In this work, a novel design framework for multi-stage constrained miniaturization of antennas with circular polarization is presented. The method involves sequential optimization...
-
A Comprehensive Survey on Antennas On-Chip Based on Metamaterial, Metasurface, and Substrate Integrated Waveguide Principles for Millimeter-Waves and Terahertz Integrated Circuits and Systems
PublicationAntennas on-chip are a particular type of radiating elements valued for their small footprint. They are most commonly integrated in circuit boards to electromagnetically interface free space, which is necessary for wireless communications. Antennas on-chip radiate and receive electromagnetic (EM) energy as any conventional antennas, but what distinguishes them is their miniaturized size. This means they can be integrated inside...
-
A Novel Versatile Decoupling Structure and Expedited Inverse-Model-Based Re-Design Procedure for Compact Single-and Dual-Band MIMO Antennas
PublicationMultiple-input multiple-output (MIMO) antennas are considered to be the key components of fifth generation (5G) mobile communications. One of the challenges pertinent to the design of highly integrated MIMO structures is to minimize the mutual coupling among the antenna elements. The latter arises from two sources, the coupling in the free space and the coupling currents propagating on a ground plane. In this paper, an array of...
-
Improved-Efficacy EM-Based Antenna Miniaturization by Multi-Fidelity Simulations and Objective Function Adaptation
PublicationThe growing demands for integration of surface mount design (SMD) antennas into miniatur-ized electronic devices have been continuously imposing limitations on the structure dimen-sions. Examples include embedded antennas in applications such as on-board devices, picosatel-lites, 5G communications, or implantable and wearable devices. The demands for size reduction while ensuring a satisfactory level of the electrical and field...
-
Variable Resolution Machine Learning Optimization of Antennas Using Global Sensitivity Analysis
PublicationThe significance of rigorous optimization techniques in antenna engineering has grown significantly in recent years. For many design tasks, parameter tuning must be conducted globally, presenting a challenge due to associated computational costs. The popular bio-inspired routines often necessitate thousands of merit function calls to converge, generating prohibitive expenses whenever the design process relies on electromagnetic...
-
Visible-light-driven lanthanide-organic-frameworks modified TiO2 photocatalysts utilizing up-conversion effect
PublicationHighly efficient and quite stable composite with core-shell-like architecture reported herein, responds to the challenge of sunlight-driven photocatalysts. The Ln(ndc)/TiO2 photocatalytic system comprises active lanthanide-carboxylate coordination networks (Nd, Er, Ho, and Tm as metal ions, and 2,6-naphthalene dicar-boxylic acid as the organic linker) and inert titanium dioxide and allow to convert incompatible visible radiation...
-
DoA Estimation Using Reconfigurable Antennas in Millimiter-Wave Frequency 5G Systems
PublicationTo achieve low latency and high throughputs, future 5G systems will have to utilize complex antenna systems able to provide beamforming and direction-of-arrival (DoA) estimation capabilities. Most of the concepts available in the literature rely on analog or digital beamforming, which is well developed and can be used both at a base station and in a user terminal. However, in applications, in which...
-
A Multi-Fidelity Surrogate-Model-Assisted Evolutionary Algorithm for Computationally Expensive Optimization Problems
PublicationIntegrating data-driven surrogate models and simulation models of different accuracies (or fideli-ties) in a single algorithm to address computationally expensive global optimization problems has recently attracted considerable attention. However, handling discrepancies between simulation models with multiple fidelities in global optimization is a major challenge. To address it, the two major contributions of this paper include:...
-
An Efficient Framework For Fast Computer Aided Design of Microwave Circuits Based on the Higher-Order 3D Finite-Element Method
PublicationIn this paper, an efficient computational framework for the full-wave design by optimization of complex microwave passive devices, such as antennas, filters, and multiplexers, is described. The framework consists of a computational engine, a 3D object modeler, and a graphical user interface. The computational engine, which is based on a finite element method with curvilinear higher-order tetrahedral elements, is coupled with built-in...
-
Parallel Implementation of the Discrete Green's Function Formulation of the FDTD Method on a Multicore Central Processing Unit
PublicationParallel implementation of the discrete Green's function formulation of the finite-difference time-domain (DGF-FDTD) method was developed on a multicore central processing unit. DGF-FDTD avoids computations of the electromagnetic field in free-space cells and does not require domain termination by absorbing boundary conditions. Computed DGF-FDTD solutions are compatible with the FDTD grid enabling the perfect hybridization of FDTD...
-
Multi-Fidelity Local Surrogate Model for Computationally Efficient Microwave Component Design Optimization
PublicationIn order to minimize the number of evaluations of high-fidelity (“fine”) model in the optimization process, to increase the optimization speed, and to improve optimal solution accuracy, a robust and computational-efficient multi-fidelity local surrogate-model optimization method is proposed. Based on the principle of response surface approximation, the proposed method exploits the multi-fidelity coarse models and polynomial interpolation...
-
Electromagnetic Simulation with 3D FEM for Design Automation in 5G Era
PublicationElectromagnetic simulation and electronic design automation (EDA) play an important role in the design of 5G antennas and radio chips. The simulation challenges include electromagnetic effects and long simulation time and this paper focuses on simulation software based on finite-element method (FEM). The state-of-the-art EDA software using novel computational techniques based on FEM can not only accelerate numerical analysis, but...
-
Detection and Mitigation of GPS Spoofing Based on Antenna Array Processing
PublicationIn this article authors present an application of spatial processing methods for GPS spoofing detection and mitigation. In the first part of this article, a spoofing detection method, based on phase delay measurements, is proposed. Accuracy and precision of phase delay estimation is assessed for various qualities of received signal. Spoofing detection thresholds are determined. Efficiency of this method is evaluated in terms of...
-
Badanie i analiza efektywności alokacji strumieni danych w heterogenicznej sieci WBAN
PublicationW niniejszej dysertacji doktorskiej poddano dyskusji efektywność alokacji strumieni danych w heterogenicznej radiowej sieci WBAN (Wireless Body Area Networks). Biorąc pod uwagę dynamiczny rozwój nowoczesnych sieci radiokomunikacyjnych piątej generacji (5G), którego część stanowią radiowe sieci działające w obrębie ciała człowieka, bardzo ważnym aspektem są metody maksymalizujące wykorzystanie dostępnych zasobów czasowo –częstotliwościowych...
-
A Low-Profile 3-D Printable Metastructure for Performance Improvement of Aperture Antennas
PublicationIn order to increase the radiation performance of aperture-type antennas, this paper demonstrates a low-profile, planar, single-layer, three-dimensional (3-D) printable metastructure. The proposed hybridized metastructure is highly transparent as it is made out of novel hybrid meta-atoms having transmission coefficient magnitudes greater than -0.72 dB and fully complies with the near-field phase transformation principle. The hybridized...
-
Low-Cost Quasi-Global Optimization of Expensive Electromagnetic Simulation Models by Inverse Surrogates and Response Features
PublicationConceptual design of contemporary high-frequency structures is typically followed by a careful tuning of their parameters, predominantly the geometry ones. The process aims at improving the relevant performance figures, and may be quite expensive. The reason is that conventional design methods, e.g., based on analytical or equivalent network models, often only yield rough initial designs. This is especially the case for miniaturized...
-
Greedy Multipoint Model-Order Reduction Technique for Fast Computation of Scattering Parameters of Electromagnetic Systems
PublicationThis paper attempts to develop a new automated multipoint model-order reduction (MOR) technique, based on matching moments of the system input–output function, which would be suited for fast and accurate computation of scattering parameters for electromagnetic (EM) systems over a wide frequency band. To this end, two questions are addressed. Firstly, the cost of the wideband reduced model generation is optimized by automating a...
-
Multi-channel radio-over-fiber communication systems through modulation instability phenomenon
PublicationRecent advancements in Radio-over-Fiber (RoF) technology have positioned it as a promising solution for highcapacity wireless communications. This paper explores novel applications of RoF systems in enhancing phased array antenna (PAA) performance for multi-channel wireless communication applications through the modulation instability (MI) phenomenon. Utilizing fibers experiencing MI with varying group velocity dispersions (β2)...
-
On Improved-Reliability Design Optimization of High-Frequency Structures Using Local Search Algorithms
PublicationThe role of numerical optimization has been continuously growing in the design of high-frequency structures, including microwave and antenna components. At the same time, accurate evaluation of electrical characteristics necessitates full-wave electromagnetic (EM) analysis, which is CPU intensive, especially for complex systems. As rigorous optimization routines involve repetitive EM simulations, the associated cost may be significant....
-
Extraction of antenna pattern from near field antenna measurements distorted by undesired emission
PublicationIn this paper authors present experimental correction of antenna pattern obtained from near field measurements when they are distorted by determined electromagnetic emission. Such situation may be met e.g. when feeding or supply subsystem interacts with antenna radiation pattern due to self-emission. Presented results of experiments show effectiveness of extraction of antenna pattern utilizing near field antenna measurements.
-
Photosensitization of TiO2 and SnO2 by Artificial Self-Assembling Mimics of the Natural Chlorosomal Bacteriochlorophylls
PublicationOf all known photosynthetic organisms, the green sulfur bacteria are able to survive under the lowest illumination conditions due to highly efficient photon management and exciton transport enabled by their special organelles, the chlorosomes, which consist mainly of self-assembled bacteriochlorophyll c, d, or e molecules. A challenging task is to mimic the principle of self-assembling chromophores in artificial light-harvesting...
-
Compact Substrate-Integrated Hexagonal Cavity-Backed Self-Hexaplexing Antenna for Sub-6 GHz Applications
PublicationA self-multiplexing SIW antenna based on hexagonal SIW cavity is proposed. The self-hexaplexing antenna consists of different sizes of resonating elements, which provide the hexaband operations. The antenna resonates at 5 GHz, 5.17 GHz, 5.32 GHz, 5.53 GHz, 5.62 GHz, and 5.72 GHz by employing different slot lengths between the resonating elements. The proposed antenna provides the individual tunable characteristics of the operating...
-
Low-Profile ESPAR Antenna for RSS-Based DoA Estimation in IoT Applications
PublicationIn this paper, we have introduced a low-profile electronically steerable parasitic array radiator (ESPAR) antenna that can successfully be used to estimate the direction-of-arrival (DoA) of incoming signals in wireless sensor network (WSN) applications, in which the height of the complete antenna has to be low. The proposed antenna is over three times lower than high-profile ESPAR antenna designs currently available in the literature...
-
Coplanar Waveguide Fed Ultra-Wideband Antenna Over the Planar and Cylindrical Surfaces
PublicationThe investigation of coplanar waveguide fed ultra-wideband antenna and the influence of the proximity of different materials on the reflection coefficients and radiation character-istics is presented. The antenna is composed of two circular coplanar strips which enclose slot aperture of similar shape and is designed on a thin and flexible substrate. From the modeling and experimental tests the antenna shows good performance in...
-
Simple 2-D Direction-of-Arrival Estimation Using an ESPAR Antenna
PublicationIn this letter, it has been shown how an electronically steerable parasitic array radiator (ESPAR) antenna can be used for 2-D direction-of-arrival (DoA) estimation employing received signal strength (RSS) values only. The proposed approach relies on changes in RSS values recorded at the antenna output port observed for different vertical and horizontal directions, while antenna’s main beam sweeps 360° area around the ESPAR antenna. Based...
-
Compact Dual-Polarized Corrugated Horn Antenna for Satellite Communications
PublicationIn this paper, a structure and design procedure of a novel compact dual-polarized corrugated horn antenna with high gain and a stable phase center for satellite communication is presented. The antenna incorporates an Ortho-Mode Transducer (OMT), a mode converter, and a corrugated structure. The compact OMT section is designed to be fed by standard WR-75 waveguides. The proposed compact design utilizes only ten corrugated slots...
-
Design and Characterization of a Planar Structure Wideband Millimeter-Wave Antenna with Wide Beamwidth for Wearable off-body Communication Applications
PublicationThis letter presents the design of a planar single-layer wideband antenna featuring wide beamwidth has well as high and stable in-band gain. The proposed antenna is a planar monopole fed by a bottom-grounded coplanar waveguide to realize wide beamwidth in both the xz- and yz-planes. Simultaneous optimization of all adjustable antenna parameters, carried out at the full-wave electromagnetic simulation level. The constructive interference...
-
Design, Realization and Measurements of Enhanced Performance 2.4 GHz ESPAR Antenna for Localization in Wireless Sensor Networks
PublicationThis paper presents the design, realization and measurements of an Electronically Steerable Parasitic Array Radiator (ESPAR) antenna with enhanced performance of estimating the incoming signal direction. Designed antenna is dedicated for 2.4 GHz ISM applications with emphasis on Wireless Sensor Networks (WSN). Proposed antenna provides different radiation patterns by proper configuration of the parasitic elements. Thus, several...
-
Circular polarization diversity implementation for correlation reduction in wideband low-cost multiple-input-multiple-output antenna
PublicationIn this paper, a multiple-input-multiple-output (MIMO) antenna featuring circular polarization diversity, and designed on a common coplanar ground is presented. The proposed antenna design utilizes a coplanar waveguide (CPW) feeding technique with three parallel coplanar ground planes, and two feedlines in-between. For circular polarization (CP), quasi-loops are created by etching slots on the outermost ground planes. With this...
-
Substrate Integrated Waveguide-Based Ultra-Compact Self-Heptaplexing Antenna for IoT Connectivity
PublicationThis paper introduces an innovative design of a substrate-integrated waveguide (SIW)-based self-heptaplexing antenna (SHA). The proposed structure is implemented using a combination of circular and rectangular HM-SIW cavities. Furthermore, the antenna contains seven individual patches on top of the SIW cavity to operate at seven distinct frequencies. The microstrip feeding technique has been used to activate seven distinct ports....
-
Unequally-Spaced Slot Strategy for Radiation Null Reduction in Single SIW-Embedded Antenna Element
PublicationThe incorporation of higher-order modes (HOMs) can substantially augment the antenna gain and bandwidth, but this improvement is typically accompanied by compromised radiation performance including radiation nulls and higher side lobe levels. In this study, an inventive strategy is introduced to reduce the radiation nulls and the side lobe levels of a single antenna element by positioning multiple slots of the radiating element...
-
Elliptical slot UWB monopole antenna
PublicationThe UWB monopole antenna with elliptical radiating slot end and microstrip feeding line terminated with radial stub have been designed, fabricated and measured. The antenna show return loss less than -12 dB in the whole UWB bandwidth. Linearity of the reflection coefficient phase product have also been achieved. Radiation patterns of the antenna measured at three selected frequency points indicated regular, approximately omni directional...
-
FINITE GROUND CPW-FED UWB ANTENNA OVER THE METALLIC CYLINDRICAL SURFACES
PublicationThe investigation of finite ground coplanar fed ultra-wideband (UWB) antenna and the influence of its curvature and the proximity of circular metallic screen on the reflection coefficients and radiation characteristics is presented. The antenna is composed of two circular coplanar strips which enclose slot aperture of similar shape and is designed on a thin and flexible substrate which allows its bending. The antenna configuration...
-
Low-Cost Multi-Objective Optimization Yagi-Uda Antenna in Multi-Dimensional Parameter Space
PublicationA surrogate-based technique for fast multi-objective optimization of a multi-parameter planar Yagi-Uda antenna structure is presented. The proposed method utilizes response surface approximation (RSA) models constructed using training samples obtained from evaluation of the low-fidelity antenna model. Utilization of the RSA models allowsfor fast determination of the best possible trade-offs between conflicting objectives in multi-objective...
-
Shape Memory Alloy-Based Fluidically Reconfigurable Metasurfaced Beam Steering Antenna
PublicationA low-cost actuator-based fluidically programmable metasurface (FPMS) antenna is proposed to solve the slow tuning speed problem of the manually fluidic based reconfigurable antennas. The FPMS-based antenna is probe-fed and comprises a 4 × 4 square ring metasurface as a superstrate. Moreover, two shape memory alloy (SMA)-based electrically-controlled actuators are employed in the design for controlling the position of the 3D-printed...
-
UHF ESPAR antenna for simple Angle of Arrival estimation in UHF RFID applications
PublicationAn electronically switched beam antenna for localization of passive UHF RFID tags based on a simple Angle of Arrival (AoA) technique is proposed‥ Detailed antenna design and realization are presented together with corresponding simulations and measurement results. Experimental tests with passive UHF RFID tag show the validity of theoretical assumptions for application of the antenna in UHF RFID based localization systems.
-
Low-cost 3D Printed Circularly Polarized Lens Antenna for 5.9 GHz V2X Applications
PublicationThis paper presents design and realization of a circularly polarized antenna consisting of a linearly polarized patch antenna and a 3D printed lens, at the same time performing the functions of wave collimator and a polarizer. The antenna is dedicated for 802.11p systems, as a part of road infrastructure, with operation bandwidth 5.85 - 5.925 GHz. Its realised gain and axial ratio at center frequency 5.9 GHz are 14.3 dBi and 2.17...
-
Design optimization of novel compact circular polarization antenna
PublicationThe paper describes a structure and a design optimization procedure of a miniaturized circular polarization antenna with elliptical ground plane slots and feed line with stepped-impedance stubs. Constrained optimization of all antenna parameters is executed in order to explicitly reduce the antenna size while maintaining required impedance axial ratio bandwidth of 5 GHz to 7 GHz at the same time. The size of the optimized antenna...
-
On Reduced-Cost Design-Oriented Constrained Surrogate Modeling of Antenna Structures
PublicationDesign of contemporary antenna structures heavily relies on full-wave electromagnetic (EM) simulation models. Such models are essential to ensure reliability of evaluating antenna characteristics, yet, they are computationally expensive and therefore unsuitable for handling tasks that require multiple analyses, e.g., parametric optimization. The cost issue can be alleviated by using fast surrogate models. Conventional data-driven...
-
Two-Row ESPAR Antenna with Simple Elevation and Azimuth Beam Switching
PublicationIn this letter, we propose a two-row electronically steerable parasitic array radiator (ESPAR) antenna designed for direction of arrival (DoA) estimation in Internet of Things (IoT) applications relying on simple microcontrollers. The antenna is capable of elevation and azimuth beam switching using a simple microcontroller-oriented steering circuit and provides 18 directional radiation patterns, which can be grouped in 3 distinctive...
-
Objective relaxation algorithm for reliable simulation-driven size reduction of antenna structure
PublicationThis letter investigates reliable size reduction of antennas through electromagnetic-driven optimization. It is demonstrated that conventional formulation of the design task by direct footprint miniaturization with imposing constraints on electrical performance parameters may not lead to optimum results. The reason is that—in a typical antenna structure—only a few geometry parameters explicitly determine the antenna footprint,...
-
Design and optimization of a novel miniaturized low-profile circularly polarized wide-slot antenna
PublicationThis paper presents a novel structure of a compact circularly polarized (CP) antenna. CP is obtained using a parasitic quasi-rectangular strip placed coplanar to the feedline. A ground plane perturbation combined with the asymmetric geometry of the coplanar waveguide ground planes is utilized to excite additional CP modes. All antenna dimensions are rigorously optimized to achieve the best possible performance in terms of the impedance...
-
Design of compact self-quintuplexing antenna with high-isolation for penta-band applications
PublicationThis article presents a novel compact self-quintuplexing antenna architecture based on a substrate-integrated rectangular cavity (SIRC) for pentaband applications. The proposed self-quintuplexing antenna is constructed by employing an SIRC, one Pi-shaped slot (PSS), one T-shaped slot (TSS), and five 50Ω microstrip feedlines. The PSS and TSS are engraved on the top of the SIRC to create five radiating patches, which are excited...
-
Performance-Based Nested Surrogate Modeling of Antenna Input Characteristics
PublicationUtilization of electromagnetic (EM) simulation tools is mandatory in the design of contemporary antenna structures. At the same time, conducting designs procedures that require multiple evaluations of the antenna at hand, such as parametric optimization or yield-driven design, is hindered by a high cost of accurate EM analysis. To certain extent, this issue can be addressed by utilization of fast replacement models (also referred...
-
Tolerance-Aware Multi-Objective Optimization of Antennas by Means of Feature-Based Regression Surrogates
PublicationAssessing the immunity of antenna design to fabrication tolerances is an important consideration, especially when the manufacturing process has not been predetermined. At the same time, the antenna parameter tuning should be oriented toward improving the performance figures pertinent to both electrical (e.g., input matching) and field properties (e.g., axial ratio bandwidth) as much as possible. Identification of available trade-offs...
-
Multi-Criterial Design of Antennas with Tolerance Analysis Using Response-Feature Predictors
PublicationImperfect manufacturing is one of the factors affecting the performance of antenna systems. It is particularly important when design specifications are strict and leave a minimum leeway for a degradation caused by geometry or material parameter deviations from their nominal values. At the same time, conventional antenna design procedures routinely neglect to take the fabrication tolerances into account, which is mainly a result...
-
Direction of Arrival Estimation Based on Received Signal Strength Using Two-Row Electronically Steerable Parasitic Array Radiator Antenna
PublicationIn this paper, we present a novel approach to direction-of-arrival (DoA) estimation using two-row electronically steerable parasitic array radiator (ESPAR) antenna which has 12 passive elements and allows for elevation and azimuth beam switching using a simple microcontroller, relying solely on received signal strength (RSS) values measured at the antenna output port. To this end, we thoroughly investigate all 18 available 3D antenna...
-
Simulation-driven size-reduction-oriented design of multi-band antennas by means of response features
PublicationThis study addresses the problem of explicit size reduction of multi-band antennas by means of simulation-driven optimisation. The principal difficulty of electromagnetic (EM)-based miniaturisation of multi-band antennas is that several resonances have to be controlled independently (both in terms of their frequency allocation and depth) while attempting to reduce physical dimensions of the structure at hand. The design method...
-
Miniaturization of ESPAR Antenna Using Low-Cost 3D Printing Process
PublicationIn this paper, the miniaturized electronically steerable parasitic array radiator (ESPAR) antenna is presented. The size reduction was obtained by embedding its active and passive elements in polylactic acid (PLA) plastic material commonly used in low-cost 3D printing. The influence of 3D printing process imperfections on the ESPAR antenna design is investigated and a simple yet effective method to compensate them has been proposed....
-
Influence of Dielectric Overlay Permittivity on Size and Performance of Miniaturized ESPAR Antenna
PublicationIn this paper, influence of dielectric overlay permittivity on miniaturized ESPAR antenna parameters is presented. ESPAR antenna is a low-cost and energy-efficient way to implement beam steering capability to a node and improve network performance. The antenna size reduction is obtained by embedding its active and passive elements in ABS based materials of relative permittivity equal to 4, 5.5 and 7.5 in order to achieve network...